Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

You are viewing the site in preview mode

Skip to main content
Fig. 1 | Genome Medicine

Fig. 1

From: Unsupervised spatially embedded deep representation of spatial transcriptomics

Fig. 1

Overview of SEDR. SEDR learns a low-dimensional latent representation of gene expression embedded with spatial information by jointly training a masked self-supervised deep autoencoder and a variational graph convolutional autoencoder. The low-dimensional embedding produced by SEDR can be used for downstream visualization, spot clustering, trajectory inference, and batch effect correction. The reconstructed feature matrix can be used to impute the raw gene expression with dropouts

Back to article page