
Bernabeu et al. Genome Medicine           (2023) 15:12  
https://doi.org/10.1186/s13073-023-01161-y

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Genome Medicine

Refining epigenetic prediction 
of chronological and biological age
Elena Bernabeu1   , Daniel L. McCartney1, Danni A. Gadd1, Robert F. Hillary1, Ake T. Lu2,3, Lee Murphy4, 
Nicola Wrobel4, Archie Campbell1, Sarah E. Harris5, David Liewald5, Caroline Hayward1,6, Cathie Sudlow7,8,9, 
Simon R. Cox5, Kathryn L. Evans1, Steve Horvath2,3, Andrew M. McIntosh1,10, Matthew R. Robinson11, 
Catalina A. Vallejos6,12 and Riccardo E. Marioni1* 

Abstract 

Background  Epigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typi-
cally defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort 
sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epige-
netic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture.

Methods  First, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological 
age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from 
the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly 
available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation 
Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma 
proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this 
bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women’s Health 
Initiative study).

Results  Through the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection 
in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge 
prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform 
GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 × 10−52, 
and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 × 10−60). Finally, we introduce MethylBrowsR, an online tool to visualise 
epigenome-wide CpG-age associations.

Conclusions  The integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to 
feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronologi-
cal age.
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Background
The development and application of epigenetic predic-
tors for healthcare research has grown dramatically over 
the last decade [1]. These predictors can aid disease risk 
stratification and are based on associations between 
CpG DNA methylation (DNAm) and age, health, and 
lifestyle outcomes. DNAm is dynamic, tissue-specific, 
and is influenced by both genetic and environmental fac-
tors. DNAm can precisely track ageing through predic-
tors termed “epigenetic clocks” [2–8]. DNAm has also 
been found to capture other components of health, such 
as smoking status [9, 10], alcohol consumption [11, 12], 
obesity [11, 13], and protein levels [14].

“First generation” epigenetic ageing clocks, including 
those by Horvath [3] and Hannum et al. [4], were trained 
on chronological age [2–4] (cAge), with near-perfect 
clocks expected to arise as sample sizes grow [5]. How-
ever, cAge clocks hold limited capability for tracking and 
quantifying age-related health status, also termed bio-
logical age (bAge) [5, 8]. To address this, “second gen-
eration” clocks have been trained on other age-related 
measures, including a phenotypic biomarker of morbid-
ity (PhenoAge [15]), rate of ageing (DunedinPACE [16]), 
and time to all-cause mortality (GrimAge [17]). Regress-
ing an epigenetic clock predictor (whether trained on 
cAge or bAge) on chronological age within a cohort gives 
rise to an “age acceleration” residual with positive values 
corresponding to faster biological ageing.

Penalised regression approaches such as elastic net [18] 
are commonly used to derive epigenetic predictors. These 
identify a weighted linear combination of CpGs that opti-
mally predict an outcome from a statistical perspective, 
i.e. no preference is given to the location or possible bio-
logical role of the input features. The majority consider 
genome-wide CpG sites as potential predictive features. 
However, others have used a two-stage approach that first 
creates DNAm surrogates (or epigenetic scores—EpiS-
cores) for biomarkers (also typically via elastic net) prior 
to training a second elastic net model on the phenotypic 
outcome or time to event (TTE) [14, 17]. GrimAge is cur-
rently considered one of the best bAge epigenetic clocks 
[16]. It is derived from age, sex, and EpiScores of smok-
ing pack years and seven plasma proteins that have been 
associated with mortality or morbidity: adrenomedullin 
(ADM), beta-2-microglobulin (B2M), cystatin C, growth 
differentiation factor 15 (GDF15), leptin, plasminogen 
activation inhibitor 1 (PAI1), and tissue inhibitor metal-
loproteinase (TIMP1). Recently, a wider set of 109 EpiS-
cores for the circulating proteome were generated by 
Gadd et  al. [14]. These have not yet been considered as 
potential features for the prediction of bAge.

Here, we sought to improve the prediction of both 
cAge and bAge (Fig.  1). We first present large-scale 

epigenome-wide association studies (EWAS) of cAge (for 
both linear and quadratic CpG effects) and time to all-
cause mortality as a proxy for bAge. A predictor of cAge 
is then generated using DNAm data from 11 cohorts, 
including samples from > 18,000 participants of the Gen-
eration Scotland study [19]. We use a leave-one-cohort-
out (LOCO) prediction framework, including feature 
pre-selection ahead of elastic net for linear and non-
linear DNAm-age relationships (ascertained through 
the EWAS), to test its performance. Through data link-
age to death records in Generation Scotland, we develop 
a bAge predictor of time to all-cause mortality, which 
we compare against GrimAge, in four external cohorts. 
These analyses highlight the potential for large DNAm 
resources to generate increasingly accurate predictors 
of (i) cAge, with potential forensic utility, and (ii) bAge, 
with potential implications for risk prediction and clini-
cal trials.

Methods
Data overview
Generation Scotland is a Scottish family-based study 
with over 24,000 participants recruited between 2006 
and 2011 [19]. Blood-based DNAm levels at 752,722 
CpG sites were quantified using the Illumina Meth-
ylationEPIC array for 18,413 individuals. Participants 
were aged between 18 and 99 years at recruitment, with 
a mean age of 47.5  years (SD 14.9, Table  1). The data 
was processed in three sets (NSet1 = 5087, NSet2 = 4450, 
NSet3 = 8876), with a total of 121 experimental batches 
(see Additional file 1).

In order to train and test a cAge predictor, Genera-
tion Scotland data as well as that from an additional 
6261 individuals from ten external cohorts were con-
sidered. These included the Lothian Birth Cohorts 
(LBC) of 1921 and 1936 [20, 21] and eight publicly 
available Gene Expression Omnibus (GEO) datasets 
(Table 1) [4, 22–25]. In addition, the independent data-
set GEO GSE55763 [13, 26] (2711 samples from 2664 
individuals) was used to assess cAge clock performance 
against existing clocks in individuals not used for train-
ing across any of the predictors considered. Given that 
the external datasets assessed DNAm (blood-based 
apart from GSE78874, which considered saliva) using 
the Illumina HumanMethylation450K array, the Gen-
eration Scotland data were subset to 374,791 CpGs that 
were present across all studies. Missing values were 
mean imputed per CpG and per cohort.

The bAge predictor was trained using data for 
18,365 participants from the Generation Scotland 
cohort for which valid death status data (i.e. death sta-
tus non-missing, and age at death not lower than age 
at baseline) via linkage to the National Health Service 
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Central Register was available. A total of 1214 par-
ticipant deaths have been recorded as of March 2022, 
when records were last updated. Alive individuals in 
March 2022 were censored at their age at that time 
(TTE thus being age in March 2022 minus age at base-
line). Average TTE amongst deaths was 7.79 (SD 3.54) 
years, and average TTE amongst censored samples was 
12.82 (SD 1.35) years. To test the bAge predictor, data 
from an additional 4134 individuals (with a total of 
1653 deaths) from four external cohorts (six datasets) 
were considered. These included the baseline samples 
of both the LBC1921 and LBC1936 cohorts, as well 
as the Framingham Heart Study (FHS) [27–29] and 
the Women’s Health Initiative (WHI) [30, 31] Broad 
Agency Award 23 (B23) study for Black, White, and 
Hispanic individuals (Table 2).

A detailed description of the datasets used (Genera-
tion Scotland, GEO, LBC, FHS, and WHI) can be found 
in Additional file 1.

Epigenome‑wide association study of chronological age
We conducted an EWAS to identify CpG sites that 
had linear or quadratic associations with chronologi-
cal age, using Generation Scotland data (N = 18,413, 
CpGs = 752,722). Linear regression analyses were car-
ried out which included both linear and quadratic 
CpG M-values as independent variables and age as the 
dependent variable (Age ~ CpG and Age ~ CpG + CpG2, 
respectively). Fixed effect covariates included esti-
mated white blood cell (WBC) proportions (basophils, 
eosinophils, natural killer cells, monocytes, CD4T, and 
CD8T cells) calculated in the minfi R package (ver-
sion 1.36.0) [32] using the Houseman method [33], sex, 
DNAm batch/set, smoking status (a factor with 5 lev-
els: current, gave up in the last year, gave up more than 
a year ago, never, or unknown), smoking pack years 
(number of packs of cigarettes smoked per day, 20 ciga-
rettes per pack, multiplied by the number of years the 
person smoked), and 20 DNAm principal components 

Fig. 1  Study overview. Using the Generation Scotland cohort as our main data source, we explored the relationship between the epigenome and 
age/survival via EWAS, which also informed on genes of interest and potentially enriched pathways. We further characterised epigenome-wide 
CpG ~ age trajectories, which can be visualised in a new Shiny app, MethylBrowsR (https://​shiny.​igmm.​ed.​ac.​uk/​Methy​lBrow​sR/). Finally, we refined 
epigenetic prediction of both cAge and bAge. Calculation of cAge can be performed either using a standalone script (https://​github.​com/​elena​
berna​beu/​cage_​bage/​tree/​main/​cage_​predi​ctor) or by uploading DNAm data to our MethylDetectR shiny app (https://​shiny.​igmm.​ed.​ac.​uk/​Methy​
lDete​ctR/). As the weights for GrimAge and its component parts are not publicly available, bAge can only be calculated by using our standalone 
script (https://​github.​com/​elena​berna​beu/​cage_​bage/​tree/​main/​bage_​predi​ctor), after obtaining GrimAge estimates from an external online 
calculator (http://​dnama​ge.​genet​ics.​ucla.​edu/​new)

https://shiny.igmm.ed.ac.uk/MethylBrowsR/
https://github.com/elenabernabeu/cage_bage/tree/main/cage_predictor
https://github.com/elenabernabeu/cage_bage/tree/main/cage_predictor
https://shiny.igmm.ed.ac.uk/MethylDetectR/
https://shiny.igmm.ed.ac.uk/MethylDetectR/
https://github.com/elenabernabeu/cage_bage/tree/main/bage_predictor
http://dnamage.genetics.ucla.edu/new
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(PCs) to correct for unmeasured confounders. Fam-
ily structure was not accounted for given the nature 
of the phenotype. Age was centred by its mean, and 
CpG/CpG2 M-values were scaled to mean zero and 
variance one. Epigenome-wide significance was set at 
p-value < 3.6 × 10−8, as per Saffari et  al. [34]. For each 
CpG-age association, F-tests were used to compare 
models including the CpG as a linear term, versus one 
including both linear and quadratic terms, whilst con-
trolling for all covariates listed here.

Epigenome‑wide association study of time to all‑cause 
mortality
We conducted an EWAS to identify CpG sites (from a 
total of 752,722 loci) that were associated with time to 
all-cause mortality in Generation Scotland. Cox propor-
tional hazards (Cox PH) regression models were fit for 
each CpG site as the predictor of interest using the coxph 
function from the survival R package (version 3.3.1), with 
time to all-cause mortality or censoring as the survival 
outcome. Fixed effect covariates included those used in 
the cAge EWAS (age at baseline, sex, batch/set, smok-
ing status, smoking pack years, WBC estimates, and top 
20 DNAm PCs). Epigenome-wide significance was set at 
p-value < 3.6 × 10−8.

To assess whether relatedness in the cohort influenced 
the results, we fit a Cox PH model with a kinship matrix 
for each significantly associated CpG, using the coxme R 
package (version 2.2.16).

Prediction of chronological age
We used elastic net regression to derive a predictor of 
chronological age from the 374,791 CpG sites common 
across all cohorts considered in cAge training (description 
of cohorts in Table 1). The L1, L2 mixing parameter was 
set at α = 0.5 based on epigenetic clock precedent [3, 5]. 
The biglasso R package (version 1.5.1) was used [35], with 
25-fold cross-validation (CV; ~ 1000 individuals per fold) 
to select the shrinkage parameter (λ) that minimised the 
mean cross-validated prediction error. A sensitivity analy-
sis was performed, assigning individuals from the same 

Table 1  Age profile and test set prediction performance for cohorts used in cAge predictor training and testing. Predictions were 
made using a LOCO approach, where each cohort was excluded in training and the resulting model was used for testing (see 
Methods). Models were trained on age, and if an individual was predicted to be under 20, their prediction was re-estimated 
considering models trained on log(age). External cohort information taken from Zhang et al. [5]. r column states Pearson correlation, 
RMSE the root mean squared error, and MAE the median absolute error

a Some cohorts contain case/control data. GSE41169: schizophrenia 62, control 33; GSE42861: rheumatoid arthritis 354, control 335; GSE53740: Alzheimer’s disease 15, 
corticobasal degeneration 1, frontotemporal dementia (FTD) 121, FTD/MND 7, progressive supranuclear palsy 43, control 193, unknown 4

Prediction accuracy

Cohort N Mean age (SD) Age range NFemales (%) Tissue r RMSE MAE

GS 18,413 47.5 (14.9) [17.1, 98.5] 10,833 (58.8%) Blood - - -

LBC192120,21 692 82.3 (4.3) [77.8,90.6] 401 (57.9%) Blood 0.659 4.050 2.466

LBC193620,21 2796 73.6 (3.7) [67.7,80.9] 1356 (48.5%) Blood 0.685 3.311 2.099

GSE7277522 335 70.2 (10.3) [36.5, 90.5] 138 (41.2%) Blood 0.949 3.275 1.843

GSE7887422 259 68.8 (9.7) [36.0, 88.0] 113 (43.6%) Saliva 0.875 6.826 4.333

GSE7277322 310 65.6 (13.9) [35.1, 91.9] 150 (48.4%) Blood 0.945 4.611 2.068

GSE7277722 46 14.7 (10.4) [2.2, 35.0] 31 (67.4%) Blood 0.942 4.211 2.505

GSE41169a,23 95 31.6 (10.3) [18.0, 65.0] 28 (29.5%) Blood 0.975 2.869 1.947

GSE402794 656 64.0 (14.7) [19.0, 101.0] 338 (51.5%) Blood 0.969 3.697 2.074

GSE42861a,24 689 51.9 (11.8) [18.0, 70.0] 492 (71.4%) Blood 0.972 4.498 3.563

GSE53740a,25 383 67.8 (9.6) [34.0, 93.0] 155 (40.5%) Blood 0.921 4.443 2.797

Table 2  Cox proportional hazards output for GrimAgeAccel 
and bAgeAccel in the test datasets. Hazard ratios are presented 
per standard deviation of the GrimAgeAccel and bAgeAccel 
variables. Further details in Additional File 4: Table  S11. Asterisk 
symbol (*) indicates the following: the FHS cohort used here was 
the same as the test set from the original GrimAge paper

Cohort N N deaths GrimAgeAccel 
Hazard ratio 
(95% CI)

bAgeAccel 
Hazard ratio 
(95% CI)

LBC193620,21 895 367 1.74 (1.57, 1.94) 1.73 (1.56, 1.91)

LBC192120,21 421 421 1.33 (1.20, 1.47) 1.44 (1.29, 1.59)

FHS*27,28 711 100 1.72 (1.35, 2.19) 1.77 (1.40, 2.25)

WHI B23 
White30,31

998 418 1.44 (1.31, 1.58) 1.45 (1.32, 1.60)

WHI B23 Black30,31 676 229 1.35 (1.19, 1.53) 1.42 (1.24, 1.62)

WHI B23 
Hispanic30,31

433 118 1.41 (1.18, 1.68) 1.44 (1.21, 1.72)
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methylation set, batch, and cohort to individual folds, 
which returned highly similar results.

The effect of including external cohorts in training, as 
well as accounting for non-linear relationships and pre-
selection of features, amongst others, is briefly detailed in 
Additional file 2. As a result of these analyses, we created 
a predictor making use of a LOCO framework, training on 
both log(age) and age, and performing feature pre-selection 
ahead of elastic net. Here, we describe each of these steps.

Leave‑one‑cohort‑out
cAge predictors were created using a LOCO framework 
where, for each of the 10 external cohorts, a model was 
trained in Generation Scotland and all but one of the 
external cohorts (Fig.  2). We then tested each of the 10 
trained models on the excluded cohort. A final model 
was trained using all 11 datasets. Pearson correlations 
(r) of cAge predictions with reported age were calcu-
lated along with the root mean square error (RMSE) and 
median absolute error (MAE).

Log(age)
In addition to training on chronological age, we also 
trained models on the natural logarithm of chronologi-
cal age, log(age), using the same LOCO framework as 
described above. The age of our test samples was predicted 
using the model trained on chronological age and, if the 
value returned was 20 years or younger, a new prediction 
was obtained making use of the model trained on log(age).

Feature pre‑selection
Several studies have highlighted the benefits of fea-
ture pre-selection for elastic net [36, 37]. Here, we per-
formed preliminary analyses, including differently sized 
subsets of CpG sites as features in elastic net. After fil-
tering for CpGs present across all datasets (374,791), 
we considered sites that were epigenome-wide signifi-
cant at p < 3.6 × 10−8 and then ranked CpGs in ascend-
ing order of p-value (most significant ranked first), 
before defining subsets of varying sizes (from 1000 to 
300,000 CpGs). For the purpose of selecting an optimal 

Fig. 2  Flowchart for the creation of the cAge predictor. First, DNAm data originating from Generation Scotland and 10 external datasets was 
pre-processed. Next, CpGs were pre-selected based on the Generation Scotland EWAS for epigenome-wide significant linear and quadratic 
CpG-age associations. Elastic net models were then trained and tested on the remaining features using a LOCO framework with 25-fold CV, with 
training on both age and log(age) as outcomes
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number of pre-selected CpGs, we performed a screen-
ing using Generation Scotland as our training cohort 
and GSE40279 (one of the largest external datasets with 
a wide age range) as our test set. Our analyses showed 
that the 10,000 most significant loci (age—CpG associa-
tions) yielded the test set predictions with the highest r 
and lowest RMSE (see Results). In addition to these sites, 
subsets of CpGs with a significant quadratic relationship 
to age were explored, with subset sizes varying from 100 
to 20,000. These features were included in training as 
CpG2 beta values and, when not already present in the 
model, in their linear form as well. In addition to the top 
10,000 age-associated CpGs, the top 300 quadratic sites 
from our EWAS yielded the best performing model (see 
Results). This final list of features was then used as input 
for the LOCO framework described above. The final 
models, trained on all datasets, selected a λ of 0.0308 for 
the model trained on age and a λ of 0.0006 for the model 
trained on log(age).

Comparison to ZhangAge, HannumAge, and HorvathAge
Our final cAge predictor (trained on all 11 datasets in 
Table 1) and those by Zhang et al. (ZhangAge) [5], Han-
num et al. (HannumAge) [4], and Horvath (HorvathAge) 
[3] were projected onto the GSE55763 dataset to compare 
their performance in an independent test set. External 
clock predictions were calculated using the methylCI-
PHER R package [38] (https://​github.​com/​Morga​nLevi​
neLab/​methy​lCIPH​ER).

Prediction of time to all‑cause mortality as a proxy 
for biological age
Training in Generation Scotland
To train a bAge predictor, component scores for Grim-
Age were estimated for all Generation Scotland sam-
ples via Horvath’s online calculator [17] (http://​dnama​
ge.​genet​ics.​ucla.​edu/​new). These included EpiScores 
of smoking and seven proteins—DNAm ADM, DNAm 
B2M, DNAm cystatin C, DNAm GDF15, DNAm leptin, 
DNAm PAI1, and DNAm TIMP1. Each variable was then 
standardised to have a mean of zero and variance of one. 
We also considered DNAm EpiScores for 109 proteins 
as described by Gadd et al. [14]. The 109 EpiScores were 
projected into Generation Scotland via the MethylDe-
tectR [39] Shiny App (https://​shiny.​igmm.​ed.​ac.​uk/​Methy​
lDete​ctR/) before being standardised to have a mean of 
zero and variance of one.

This resulted in 116 protein EpiScores, a smoking 
EpiScore, plus chronological age and sex as features for 
an elastic net Cox PH model (R package glmnet version 
4.1.4), using time to all-cause mortality or censoring as 
outcome. A 20-fold CV was performed (with approxi-
mately 1000 individuals per fold), with individuals from 

the same Generation Scotland technical batch (see Addi-
tional file 1) included in the same fold, and with Harrell’s 
C index used to identify the optimal λ value (0.0025).

Testing in LBC, FHS, and WHI
We defined bAge as the weighted linear combination of 
covariates selected by our Cox PH elastic net model (see 
Results). These estimates were then scaled and returned 
as a predictor with mean of zero and variance of one, for 
each dataset. A bAgeAccel estimate was also calculated, 
which is the residual of bAge regressed on chronological 
age to obtain measure of accelerated epigenetic ageing.

After regressing on age, we assessed the association 
between our bAge clock, as well as GrimAge, Pheno-
Age, and DunedinPACE, and time to all-cause mortality 
in LBC1921 and LBC1936. GrimAge and PhenoAge were 
calculated using Horvath’s online calculator [17], whilst 
DunedinPACE was calculated via the DunedinPACE 
R package [16] (https://​github.​com/​danbe​lsky/​Duned​
inPACE). Cox PH models, adjusting for age and sex, 
were used to evaluate associations between the clocks 
and all-cause mortality. Further, Cox PH models treating 
GrimAge, PhenoAge, and DunedinPACE (in turn) as a 
covariate in addition to our bAge clock were run to assess 
our predictor’s independent association with mortality.

Finally, associations with time to all-cause mortality 
in four additional external datasets (FHS, and the WHI 
studies for White, Black, and Hispanic ancestries) were 
assessed for GrimAge and bAge, the clocks with the larg-
est associations in the LBC cohorts (Table 2).

We examined Schoenfeld residuals in the LBC1921 
and LBC1936 Cox PH models that included age, sex, and 
our bAge clock as covariates to check the proportional 
hazards assumption at both global and variable-specific 
levels using the cox.zph function from the R survival 
package (version 3.3.1).

CpG‑based predictor of mortality
We also investigated a direct CpG predictor for time 
to all-cause mortality (methods and results described 
in Additional file  2). This predictor was found to have 
weaker associations with time to all-cause mortality in 
the LBC cohorts than the aforementioned bAge estimate, 
both when training just on CpGs as well as when consid-
ering both CpGs and EpiScores as training features.

Enrichment analyses
Gene set enrichment analyses were performed using the 
Functional Mapping and Annotation (FUMA) GENE-
2FUNC tool [40], which employs a hypergeometric test. 

https://github.com/MorganLevineLab/methylCIPHER
https://github.com/MorganLevineLab/methylCIPHER
http://dnamage.genetics.ucla.edu/new
http://dnamage.genetics.ucla.edu/new
https://shiny.igmm.ed.ac.uk/MethylDetectR/
https://shiny.igmm.ed.ac.uk/MethylDetectR/
https://github.com/danbelsky/DunedinPACE
https://github.com/danbelsky/DunedinPACE
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Background genes employed included all unique genes 
tagged by CpGs in the EPIC array. A false discovery rate 
(FDR) p-value threshold was set at 0.05, and the mini-
mum number of overlapping genes within gene sets was 
set to 2. These analyses did not explicitly account for Illu-
mina chip biases relating to how CpGs are annotated to 
genes [41], which may have influenced our results.

Results
Epigenome‑wide association study of chronological age
EWAS of cAge were performed in the Generation Scot-
land cohort, resulting in 99,832 linear and 137,915 
quadratic CpG associations that were epigenome-wide 
significant (p < 3.6 × 10−8, Additional file  3: Figure S1, 
Additional file  4: Table  S1 and S2, see Methods). These 
mapped to 17,339 and 19,432 unique genes, respectively. 
There were 48,312 CpGs with both a significant linear 
and quadratic association.

The most significant linear associations included 
cg16867657 and cg24724428 (ELOVL2), cg08097417 
(KLF14), and cg12841266 (LHFPL4), all p < 1.0 × 10−300, 
(Additional file  3: Figure S2, Additional file  4: Table  S1). 
Around half of the CpGs with a significant linear associa-
tion (51,213/99,832, 51.3%) showed a positive association 
between DNAm and age. The most significant quadratic 
associations were cg11084334 (LHFPL4, p = 6.5 × 10−206), 
cg15996534 (LOC134466, p = 8.7 × 10−194), and cg23527621 
(ECE2 and CAMK2N2, p = 1.0 × 10−190, Additional file  3: 
Figure S3, Additional file 4: Table S2).

The univariate associations between all 752,722 CpGs 
and cAge in a subset of 4450 unrelated participants 
(DNAm arrays processed together in a single experi-
ment) from Generation Scotland can be visualised via an 
online ShinyApp, MethylBrowsR (https://​shiny.​igmm.​ed.​
ac.​uk/​Methy​lBrow​sR/).

Epigenome‑wide association study of time to all‑cause 
mortality
To identify individual CpG loci associated with survival, 
we performed an EWAS on time to all-cause mortal-
ity in Generation Scotland (Ndeaths = 1214; see Methods). 
This analysis identified 1182 epigenome-wide significant 
associations (p < 3.6 × 10−8, Additional file  3: Figure S4), 
which mapped to 704 unique genes. For around a third 
(418/1182 = 35.4%) of these CpGs, DNAm was associ-
ated with a decreased survival time (HR > 1). The lead 
findings included CpGs mapping to smoking-related loci 
[10, 42–46] such as cg05575921 (AHRR, p = 3 × 10−57), 
cg03636183 (F2RL3, p = 6.8 × 10−44), cg19859270 (GPR15, 
p = 1.1 × 10−33), cg17739917 (RARA​, p = 1.9 × 10−33), 
cg14391737 (PRSS23, p = 5.6 × 10−33), cg09935388 (GFI1, 
p = 3.3 × 10−31), and cg25845814 (ELMSAN1/MIR4505, 

p = 1.3 × 10−30) (Additional file 4: Table S3). Amongst the 
top 50 associations, only one probe has not been previ-
ously linked to smoking (assessed via a lookup of findings 
from the EWAS catalog [47]), cg03546163. This probe 
maps to FKBP5, a gene whose methylation is involved 
in the regulation of the stress response and which has 
been linked to increased cardiometabolic risk through 
accelerated ageing [48]. All associations, except that for 
cg24364998, remained statistically significant after adjust-
ing for relatedness in the Generation Scotland cohort (see 
Methods, Additional file 4: Table S4).

There was a high correlation of the Z-score effect 
sizes across the 200 sites that overlapped between our 
study and the 257 epigenome-wide significant findings 
from a recent large (N = 12,300, Ndeaths = 2561) meta-
analysis of all-cause mortality [49] (r = 0.58, Addi-
tional file 3: Figure S5). Despite differences in covariate 
adjustments, all 200 sites were significant at a nominal 
p < 0.05 threshold, and 25 were epigenome-wide signifi-
cant at p < 3.6 × 10−8.

A gene-set enrichment analysis considering genes 
to which epigenome-wide significant CpGs mapped 
returned 198 significantly enriched (FDR p < 0.05) 
GO biological processes (see Methods, full FUMA 
gene-set enrichment results in Additional file  4: 
Table S5). The most significantly enriched GO terms 
included processes relating to neurogenesis/neuron 
differentiation and development, positive immune 
system regulation and development, cell motility and 
organisation, and regulation of protein modification/
phosphorylation. Other significantly enriched sets 
included sites bound by FOXP3, ETS2, and the PML-
RARA fusion protein.

Prediction of chronological age
Epigenetic clocks for cAge were created using elastic 
net penalised regression in a LOCO framework (total 
of 10 models), with a final cAge clock trained on all 
data (see Methods, Fig.  2, Additional file  2). In our 
screening step, after iterating through combinations of 
CpG and CpG2 terms (ranked by EWAS p-value), the 
best-performing model considered the top 10,000 CpG 
and top 300 CpG2 sites from the EWAS as potentially 
informative features (see Methods, Additional file  3: 
Figure S6 and S7, Additional file  4: Table  S6 and S7). 
Both age and log(age) were considered as outcomes, 
with the latter showing better prediction results in 
younger individuals, reflecting the importance of 
considering non-linear DNAm-age associations in 
cAge prediction (see Methods, Additional file  2). As 
a result, if the initial cAge prediction was < 20  years, 

https://shiny.igmm.ed.ac.uk/MethylBrowsR/
https://shiny.igmm.ed.ac.uk/MethylBrowsR/
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that individual’s predicted age was re-estimated using 
weights from the log(age) model.

The combined LOCO prediction results (one cAge 
model per external cohort) showed a strong correlation 
with cAge (r = 0.96, Fig.  3, Additional file  3: Figure S8, 
Table  1) and a MAE of 2.3  years. Furthermore, 24% of 
individuals were classified to within 1 year of their chron-
ological age. The cohort with the largest prediction errors 
was GSE78874, in which DNAm was measured in saliva 
instead of blood.

The final cAge predictor (trained in all 11 cohorts) with 
the lowest mean cross-validated error identified 2330 
features (2274 linear and 56 quadratic) as most predictive 
of age, and 1986 features (1931 linear and 55 quadratic) 
as most predictive of log(age). The weights for the age 
model are presented in Additional file 4: Table S8, and for 
the log(age) model in Additional file 4: Table S9.

Considering a large external cohort (N = 2711), our 
cAge predictor (r = 0.96, RMSE = 3.04, MAE = 1.74) out-
performed ZhangAge (r = 0.95, RMSE = 5.54, MAE = 3.8), 

Fig. 3  Performance of cAge LOCO framework (one cAge model per external cohort), a across all 10 datasets considered, and b per cohort. 
Performance metrics shown include Pearson correlation (r), root mean squared error (RMSE), and median absolute error (MAE). Metrics also included 
in Table 1
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HorvathAge (r = 0.90, RMSE = 9.1, MAE = 8.11), and 
HannumAge (r = 0.88, RMSE = 5.08, MAE = 3.53, Fig. 4).

Prediction of time to all‑cause mortality as a proxy 
for biological age
In an effort to improve the prediction of bAge, an elastic 
net Cox model was trained on time to all-cause mortal-
ity in Generation Scotland (Ntotal = 18,365, Ndeaths = 1214; 
see Methods). The GrimAge components (age, sex, and 
EpiScores for smoking and 7 plasma proteins) and Gadd 
et  al.’s 109 protein EpiScores [14] were considered as 
potentially-informative features (Fig. 5).

The elastic net Cox PH model identified a weighted 
sum of 35 features as most predictive of time to all-cause 
mortality in Generation Scotland. These included age and 
the GrimAge smoking EpiScore, along with 5/7 protein 
EpiScores from GrimAge (B2M, cystatin C, GDF15, PAI1, 
and TIMP1), and 28/109 protein EpiScores from Gadd 
et al. [14]. Amongst these were EpiScores for C-reactive 
protein (CRP), the growth hormone receptor (GHR) pro-
tein, and numerous cytokines (CCL11, CCL23, CCL18, 
CXCL10, CXCL9, CXCL11, and HGF). The weights for 
the linear predictor are presented in Additional file  4: 
Table S10.

Our bAge predictor was regressed on age to obtain 
a measure of epigenetic age acceleration (bAgeAccel). 
The epigenetic age acceleration residuals showed sig-
nificant associations with time to all-cause mortality 
across six test datasets of differing ancestries (Table 2, 
Additional file 4: Table S11, Fig. 6).

We assessed our predictor’s association with time to 
all-cause mortality in comparison to three other epi-
genetic clocks: GrimAge, PhenoAge, and Dunedin-
PACE (age acceleration residuals after regressing the 
clock estimates on age) in the LBC1921 and LBC1936 
cohorts (see Methods). Our bAge predictor showed 
stronger associations (in magnitude and statistical 
significance) with time to all-cause mortality than 

DunedinPACE and PhenoAge and similar performance 
to GrimAge (Additional file  3: Figure S9, Additional 
file  4: Table  S12). Our bAge predictor’s association 
with time to all-cause mortality remained significant 
(p < 0.05) after adjusting for GrimAge, PhenoAge, and 
DunedinPACE as covariates in three separate models 
(Additional file  4: Table  S13). Considering all six test 
datasets, the bAge measure showed slightly stronger 
associations than GrimAge in fixed effects meta-analy-
ses (HR and 95% confidence interval per SD difference 
of GrimAgeAccel and bAgeAccel: HR = 1.47 [1.40, 1.54] 
with p = 1.08 × 10−52, and HR = 1.52 [1.44, 1.59] with 
p = 2.20 × 10−60, respectively (Table 2, Additional file 4: 
Table S11, Fig. 6).

Schoenfeld residual analyses highlighted violations 
to the proportional hazards assumption at global and 
variable specific levels for LBC1921 and LBC1936. 
However, re-running the analysis with different TTE 
censoring (thresholding at each possible integer year of 
follow-up) showed minimal differences in the bAgeAc-
cel-survival HRs between models that did not violate 
the assumption and those that did (see Methods, Addi-
tional file 4: Table S14).

Discussion
Accurate predictors of cAge and bAge have major impli-
cations for biomedical science and healthcare through 
risk prediction and preventative medicine. Here, we 
present improved DNAm-based predictors of age and 
lifespan.

Epigenetic cAge prediction is expected to reach near-
perfect estimates as sample sizes grow [5]. Making 
use of Generation Scotland, a very large single-cohort 
DNAm resource, we derived a cAge predictor with a 
MAE of 1.7  years, tested in over 2000 external samples 
(Fig. 4). Our predictor has potential forensic applications, 
although ethical caveats exist [8]. In addition, despite 
the high correlations and low RMSE and MAE estimates 

Fig. 4  cAge predictor performance in the GSE55763 dataset, compared to ZhangAge, HannumAge, and HorvathAge. Performance metrics shown 
include Pearson correlation (r), root mean squared error (RMSE), and median absolute error (MAE)
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at the population level, there are still several individu-
als with inaccurate predictions (e.g. > 20  years between 
predicted and actual age, Fig.  3), though this could also 
reflect sample mix-ups or data entry errors.

cAge prediction was improved when accounting for 
non-linear relationships between DNAm and age (Addi-
tional file  2, Additional file  3: Figure S7). Whilst gener-
ally understudied, non-linear patterns have been found at 
numerous CpG sites, where DNAm is found to increase 
rapidly in early ages and stabilise in adulthood, potentially 
reflecting developmental processes [50]. Similarly, stable 
DNAm levels followed by rapid methylation/demeth-
ylation have also been described in later life [51], which 
could offer insight into ageing-specific processes. Given 
the number of samples from individuals aged 20 or under 
in the training of our predictor (N = 574/24,674 = 2.4%), 
we may not have captured the full extent of DNAm-based 
ageing patterns in the younger population. Future stud-
ies could also consider sex-specific models, as diverg-
ing non-linear patterns between males and females have 
been shown previously [52]. Interactions between CpGs 
along with higher order polynomial terms and spline-
based models might better capture some of these non-
linear changes.

The development of the cAge predictor highlighted the 
advantages of feature pre-selection ahead of penalised 
elastic net regression. Compared to a model with all pos-
sible features in the training set (r = 0.93, RMSE = 5.25, 
MAE = 3.43, see Additional file  2), pre-selection 
greatly improved performance (r = 0.96, RMSE = 3.92, 
MAE = 2.32, Fig.  3). Several DNAm studies of age and 
age-related phenotypes have used pre-selection meth-
ods (e.g. filtering by magnitude of correlation or strength 
of association) instead of, or in addition to elastic net 
[53–60]. Whereas the feature pre-selection here required 
arbitrary decisions on thresholds, other studies have 
found that feature reduction via PCA optimises DNAm 
predictors [36, 37].

Feature pre-selection may have aided cAge predictions 
by screening out CpGs with low intra-sample variability 
due to technical variance [61, 62]. One previous study [37] 
observed that CpGs with stronger cAge associations were 
more reliable. A limitation of our approach to feature pre-
selection was that it was biased towards the Generation 
Scotland cohort in which the age EWAS were conducted. 
We also note that pre-selection introduces statistical chal-
lenges associated with post-selection inference [63]. Fur-
thermore, our penalised regression modelling strategy for 

Fig. 5  Flowchart for the creation of the bAge predictor. First, DNAm data originating from Generation Scotland and six external datasets was 
pre-processed. GrimAge components and 109 protein EpiScores were generated within each cohort. A Cox PH elastic net regression model of time 
to all-cause mortality (with 20-fold CV) was trained in Generation Scotland with the GrimAge components and EpiScores as possible features. The 
model that maximised Harrell’s C index was tested on the six external datasets
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cAge only incorporated additive effects. Non-additive tree 
ensemble methods and other machine learning frame-
works may improve predictions further [64]. Finally, as 
our predictor has been mainly trained and tested on blood 
data, it may not generalise to other tissues.

Whilst a single DNAm predictor of cAge is of inter-
est, the selected CpG features are unlikely to identify all 
epigenome-wide patterns related to ageing. Our EWAS 
of chronological age identified 99,832 linear and 137,915 
quadratic CpG-age associations. The sample size was 
more than double that of the largest study reported 
on the EWAS Catalog [47]—our previous Generation 
Scotland analysis [65]. In addition to refining our previ-
ously described DNAm-age linear associations, we have 
extended previous small-scale approaches to highlight 
non-linear patterns [51, 52]. As shown here, these find-
ings can aid the predictive performance of epigenetic 
clocks and may additionally improve our understanding 
of epigenetic changes during development and ageing-
related decline in later life.

Recent work has shifted focus from the prediction of 
cAge to bAge, with more expansive clinical applications. 
Our new bAge predictor of all-cause mortality had a 
greater effect size and was more statistically significant 
than GrimAge in the external test set meta-analysis. 
GrimAge is already being used as an end-point for clini-
cal trials [66] and studies of rejuvenation [67, 68]. Our 
bAge predictor includes five of the seven original Grim-
Age EpiScores, with ADM and leptin not being selected 
as features. In addition, it includes 28 protein EpiScores 

from Gadd et  al. [14]. Amongst the additional protein 
EpiScores selected by our predictor were those for CRP 
and numerous cytokines, which reflect inflammation 
and predict overall and cardiovascular mortality [69–
71]. Chronic inflammation can lead to several diseases, 
including cardiovascular disease, and exacerbates the 
ageing process [72, 73]. In addition, the growth hormone 
receptor (GHR) protein EpiScore was selected; both the 
receptor and its corresponding protein have been linked 
to longevity in mouse models [74–78]. Twenty-five of the 
28 of the selected EpiScores from Gadd et  al. [14] have 
been associated to multiple diseases, including diabetes, 
chronic obstructive pulmonary disease, ischaemic heart 
disease, lung cancer, Alzheimer’s, rheumatoid arthri-
tis, stroke, and depression (Additional file 4: Table S10). 
As sample sizes for cause-specific mortality outcomes 
increase, a more granular suite of lifespan predictors can 
be developed. Future studies may also consider the cost 
implications of profiling thousands of CpGs against the 
potential improvements in health-span and savings from 
delaying or preventing disease.

Whereas the cAge predictor is directly applicable and 
interpretable for a new individual, bAge estimates are 
relative to the values of other participants in the testing 
dataset, given the within-cohort scaling of the input fea-
tures prior to projection. Reporting findings per SD of 
bAgeAccel will therefore help to facilitate cross-cohort 
comparisons. Future work for these (and all) DNAm 
array-based predictors should consider the limitations 
of signatures that lack absolute thresholds/cut-points for 

Fig. 6  Forest plots of bAge/GrimAge predictors, applied to time to all-cause mortality in LBC1921, LBC1936, FHS, and WHI. Predictors regressed on 
age. Hazard ratios are presented per standard deviation of the GrimAgeAccel and bAgeAccel variables, along with 95% confidence intervals. Cox 
models are adjusted for age at DNAm sampling and sex
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risk prediction in a new individual selected at random 
from the population.

A total of 1182 epigenome-wide significant associa-
tions were identified in our EWAS of all-cause mortality. 
The most significant probes mapped to genes previously 
associated with smoking, such as AHRR, F2RL3, and 
GPR15 [79]. Hypomethylation at probes nearby these 
genes has been previously linked to increased mortality 
risk, be that all-cause or disease specific (e.g. cancer or 
cardiovascular-related mortality) [29, 42, 80, 81]. There 
was moderate agreement (correlation of 0.58 between 
Z-scores) between our findings and the significant results 
from a previous EWAS meta-analysis of survival. How-
ever, different covariates and ancestries were considered 
across these studies. An enrichment analysis highlighted 
links to neurodevelopment and immune regulation, as 
well as to sites bound by FOXP3, ETS2, and the PML-
RARA fusion protein. FOXP3 is a transcriptional regula-
tor involved in the development and inhibitory function 
of regulatory T cells [82]. ETS2 and PML-RARA are a 
protooncogene and a protein resulting from a chromo-
somal translocation that generates an oncofusion protein, 
respectively, having both been linked to acute myeloid 
leukemia [83, 84]. This finding may be influenced by the 
large number of cancer-related deaths in Generation 
Scotland (N = 509). Further work is needed to disentan-
gle the role of methylation/demethylation at these sites 
with survival, including the fitting of models with more 
complete sets of comorbidities, risk, and lifestyle factors. 
Future EWAS on specific mortality causes will highlight 
mechanisms underlying age- and disease-related decline.

Importantly, the majority of Generation Scotland par-
ticipants are of White British ancestry, meaning analyses 
could present biases towards this population. Whilst our 
cAge predictor, which was trained on Generation Scot-
land and external cohorts of multiple ancestries (White, 
Hispanic, South Asian, East Asian), showed similar accu-
racy across all testing datasets (Fig.  3b), the magnitude 
of the survival effect size for bAge was slightly reduced 
(though still statistically significant) when consider-
ing African American and Hispanic ancestry samples, 
as opposed to European American samples in the WHI 
cohort (Fig. 6, Table 2). Additionally, our EWASs of sur-
vival and age were conducted only using Generation 
Scotland data. In this context, large multi-ancestry and 
multi-omic cohorts are needed.

Conclusions
The integration of multiple large datasets and new 
approaches to feature selection has facilitated improve-
ments to the blood-based epigenetic prediction of bio-
logical and chronological age. The inclusion of multiple 

protein EpiScore features and consideration of quadratic 
DNAm effects may also be relevant for other EWAS and 
prediction studies. Together, this can improve our biolog-
ical understanding of complex traits and the prediction of 
adverse health outcomes.
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elena​berna​beu/​cage_​bage/​tree/​main/​bage_​predi​ctor
Visualization of CpG-age relationships can be viewed using MethylBrowsR: 
https://​shiny.​igmm.​ed.​ac.​uk/​Methy​lBrow​sR/
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