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Abstract 

Background  Acute sinusitis (AS) is a frequent cause of antibiotic prescriptions in children. Distinguishing bacterial 
AS from common viral upper respiratory infections (URIs) is crucial to prevent unnecessary antibiotic use but is chal‑
lenging with current diagnostic methods. Despite its speed and cost, untargeted RNA sequencing of clinical samples 
from children with suspected AS has the potential to overcome several limitations of other methods. In addition, RNA-
seq may reveal novel host-response biomarkers for development of future diagnostic assays that distinguish bacterial 
from viral infections. There are however no available RNA-seq datasets of pediatric AS that provide a comprehensive 
view of both pathogen etiology and host immune response.

Methods  Here, we performed untargeted RNA-seq (metatranscriptomics) of nasopharyngeal samples from 221 
children with AS and performed a comprehensive analysis of pathogen etiology and the impact of bacterial and viral 
infections on host immune responses. Accuracy of RNA-seq-based pathogen detection was evaluated by compari‑
son with culture tests for three common bacterial pathogens and qRT-PCR tests for 12 respiratory viruses. Host gene 
expression patterns were explored to identify potential host responses that distinguish bacterial from viral infections.

Results  RNA-seq-based pathogen detection showed high concordance with culture or qRT-PCR, showing 87%/81% 
sensitivity (sens) / specificity (spec) for detecting three AS-associated bacterial pathogens, and 86%/92% (sens/spec) 
for detecting 12 URI-associated viruses, respectively. RNA-seq also detected an additional 22 pathogens not tested 
for clinically and identified plausible pathogens in 11/19 (58%) of cases where no organism was detected by culture 
or qRT-PCR. We reconstructed genomes of 196 viruses across the samples including novel strains of coronaviruses, 
respiratory syncytial virus, and enterovirus D68, which provide useful genomic data for ongoing pathogen surveil‑
lance programs.

By analyzing host gene expression, we identified host-response signatures that differentiate bacterial and viral infec‑
tions, revealing hundreds of candidate gene biomarkers for future diagnostic assays.
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Conclusions  Our study provides a one-of-kind dataset that profiles the interplay between pathogen infection 
and host responses in pediatric AS and URI. It reveals bacterial and viral-specific host responses that could enable new 
diagnostic approaches and demonstrates the potential of untargeted RNA-seq in diagnostic analysis of AS and URI.
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Background
Clinically, acute bacterial sinusitis (hereinafter referred 
to as acute sinusitis) is diagnosed in children when bac-
terial superinfection of inflamed mucosa secondary 
to an upper respiratory tract viral infection (URTI) is 
suspected [1, 2]. It is one of the most common diagno-
ses in pediatric primary care settings in the USA with 
5 million antibiotic prescriptions written annually [3]. 
However, because symptoms of acute sinusitis and an 
uncomplicated URTI overlap considerably, some chil-
dren diagnosed and treated for acute sinusitis do not 
have a bacterial infection [2, 3]. The diagnosis is espe-
cially challenging because the symptoms may be less 
specific in young children [2]. Overtreatment of infec-
tions such as sinusitis is thought to be a major con-
tributor to the rise in antimicrobial resistance (AMR), 
which remains an ongoing threat to public health [1].

Bacterial pathogens most frequently isolated from 
the sinuses of children with acute sinusitis include Hae-
mophilus influenzae (HFLU), Streptococcus pneumo-
niae (SPN), and Moraxella catarrhalis (MCAT) [2, 4]. 
Upper respiratory tract infections are often associated 
with viruses such as influenza virus (INF), respiratory 
syncytial virus (RSV), coronavirus (COV), adenovirus 
(ADV), human rhinovirus (HRV), human metapneu-
movirus (MPV), enterovirus (EV), and parainfluenza 
virus (PIV) [5]. Symptoms of a viral upper respira-
tory tract infection can be difficult to distinguish from 
symptoms of acute bacterial sinusitis [5].

Recently, it has been suggested that one way to distin-
guish between bacterial and viral infections would be 
to obtain samples from the middle turbinate or naso-
pharynx of children with suspected sinusitis and to test 
these samples (using culture or qRT-PCR) for the three 
bacterial pathogens that frequently cause acute sinusi-
tis [6]. Using the presence of bacterial pathogens in the 
nasopharynx to determine which children benefit from 
antibiotics, which was the paradigm shift suggested by 
the above manuscript [6], does not require claiming 
that these pathogens are necessarily causing an infec-
tion or that they are present in the sinuses. This shift 
was necessary in the view of the authors of the afore-
mentioned work because establishing whether bacterial 
sinusitis is truly present is neither ethical nor practi-
cal; the latter could only be accomplished by aspirating 

every single sinus and determining whether pathogens 
are present and whether they are causing inflammation.

With the remarkable reduction in the cost of high-
throughput sequencing technologies, sequencing has 
emerged as an appealing strategy for the detection and 
taxonomic characterization of microorganisms in clini-
cal samples from patients and has potential to overcome 
several limitations of currently available methods such as 
culture or qRT-PCR [7, 8]. High-throughput sequencing 
of RNA transcripts derived from all organisms (bacterial, 
viral, host, etc.) in a patient sample (metatranscriptom-
ics [9]) allows for a broad, untargeted approach to detect 
common, uncommon, and novel pathogens. Pathogen 
detection by high-throughput RNA or DNA sequenc-
ing is showing promise in a growing number of infec-
tious disease applications including pneumonia [10, 11], 
COVID-19 [12], meningitis [13], and febrile illness [14], 
and has been effective in identifying potential pathogens 
causing infection, including cases where no pathogen was 
detected using qRT-PCR or culture.

In addition, a significant benefit of metatranscriptomic 
sequencing is that it captures both pathogen-derived as 
well as host-derived RNA, which facilitates both patho-
gen detection as well as analysis of host gene expression 
patterns (host response profiling). Whereas sequence-
based pathogen detection relies on detecting sequences 
of known pathogens, host-response profiling may quan-
tify the expression level of biomarkers that indicate active 
host immune response to infection in a pathogen-agnos-
tic manner. For example, Wesolowska-Andersen et  al. 
used dual RNA-seq to examine host-virus interactions 
in asthmatic children, and found that patients with high 
viral read counts were associated with host-response 
gene expression indicating immune cell infiltration, cilia 
downregulation, and dampening of the type 2 inflam-
matory response [15]. Also using metatranscriptomics, 
Zhang et al. found that host responses to upper respira-
tory viral infection can impact host-microbiome interac-
tions such as antibiotic resistance gene expression that 
play a role in secondary bacterial infections [16]. Thus, 
information on host-response may help not only to dis-
tinguish active infections from colonization but also 
uncover potential host biomarkers of infectious disease 
progression and severity. Several previous studies have 
also used RNA-seq or microarray techniques to identify 
and quantify biomarkers that differentiate between viral 
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and bacterial respiratory infections [17–22]. Using 104 
host-response genes identified using microarray analysis 
of blood samples, Tsalik et al. developed separate bacte-
rial and viral infection classifiers that had a combined 
accuracy of 87% [17]. Host-response profiling from blood 
samples has also formed the basis of commercially avail-
able systems (e.g., MeMed BV®). If host-response pro-
files from a nasopharyngeal (NP) sample can similarly be 
used to differentiate bacterial from non-bacterial sinusi-
tis infections, this could contribute to the development 
of biomarker assays that inform clinical decision making 
regarding the use of antibiotics.

In this work, to examine the ability of metatranscrip-
tomics to uncover microbiological and clinically relevant 
information, we performed metatranscriptomic analysis 
of NP swabs from 221 children with clinically diagnosed 
acute sinusitis who were a subset of children enrolled in a 
previously described clinical trial [6]. Through RNA-seq 
analysis of NP swab samples, we performed metatran-
scriptomic pathogen detection and assessed its ability 
to reproduce culture and qRT-PCR results for 3 bacteria 
and 12 viruses. We then reconstructed partial to com-
plete genomes of 196 viruses. Finally, we performed 
host-response profiling and identified gene expression 
signatures of bacterial and viral infection, which corre-
lated significantly with pathogen load. Our work shows 
the potential of metatranscriptomics for improving diag-
nosis of sinusitis and upper respiratory tract infections.

Methods
Study design and description of the cohort
Between February 2016 and April 2022, 510 children 2 to 
11 years of age (inclusive) with clinically diagnosed acute 
sinusitis as defined by the American Academy of Pediat-
rics were enrolled in a randomized multicenter double-
blind trial (ClinicalTrials.gov number, NCT02554383). 
As described previously [6], an initial Pediatric Rhinosi-
nusitis Symptom Scale (PRSS) score was required for 
inclusion. Children with persistent presentation (nasal 
and/or cough for 11 to 30  days without improvement) 
as well as children with worsening presentation (nasal or 
cough or fever in day 6 to 10 who appeared to be recover-
ing from a viral URI) were included. The main exclusion 
criteria were severe disease and systemic antibiotic use 
within 15 days [6]. Children were recruited from 6 outpa-
tient centers. Children were randomly assigned to receive 
10 days of amoxicillin-clavulanate or matching placebo. A 
total of 204 patients did not have a NP sample collected, 
or their sample was not preserved in RNA buffer and 
was excluded. Of the remaining 306 patients’ samples, 
61 were not sequenced due to low RNA yield. Although 
245 samples underwent RNA sequencing, batch 1 was 
prepared with a different kit/protocol and when analyzed 

displayed a strong batch effect and was thus removed, 
leaving 221 patients. The previously reported primary 
outcome, symptom severity, was assessed by having par-
ents complete the PRSS electronically every evening on 
days 2 to 11 [6].

In addition to the above cohort, we also included 9 
children as control samples. These children were asymp-
tomatic household contacts of index cases enrolled in a 
separate study (STUDY20070001: INSPIRE—Infection 
iN houSehold contacts of Patients with covId-19: The 
Role of Epigenetics) who were recently diagnosed with 
COVID-19 based on a positive qRT-PCR test. Index 
cases were recruited from pediatric outpatient clinics, 
urgent care facilities, and emergency departments, as 
well as through the Pitt + Me online research recruitment 
platform. Household contacts were eligible if they tested 
negative for COVID-19 and the following symptoms 
were absent: (1) fever plus cough or difficulty breathing; 
or (2) fever or cough plus loss of taste or smell. Enroll-
ment occurred between April 2021 and July 2023.

Sample collection
We collected NP swabs from all 221 children at study 
entry. As previously described [23], the tip of the swab 
was cut, placed in a cryovial with DNA/RNA shield 
(Zymo, R1100), and transported on ice to the lab; this 
cryovial was used for RNA-seq. For the nine control 
samples, participants received sterile flocked swabs 
along with a preservation tube containing 3 mL of buffer 
(DNA/RNA Shield, Zymo Research, Irvine, CA, USA) for 
self- or parental swabbing. The collected specimens were 
sent back to the research laboratory via medical courier 
without the use of ice for transport.

Culture and sensitivity pattern of bacterial pathogens
The remainder of the swab was placed into Amies trans-
port medium and transported on ice to the Clinical 
Laboratory at UPMC Children’s Hospital of Pittsburgh 
within 48  h and plated on blood and chocolate agars. 
Identification of SPN, HFLU, and MCAT on culture was 
accomplished using standard microbiological techniques. 
HFLU isolates were tested for the beta-lactamase pro-
duction using a cefinase disk.

qRT‑PCR for viral co‑infection
Using an aliquot of Amies transport media plus Mag-
Max lysis/binding buffer, nucleic acid extraction was per-
formed for viral identification using the ABI MagMax96 
Express automated instrument and the MagMax 96 
Viral Isolation Kit (Thermo Fisher, AMB 18365) [23, 24]. 
Adenovirus, influenza subtypes A/B/C, human metap-
neumovirus (MPV), human rhinovirus (HRV), parain-
fluenza virus (PIV) subtypes 1–4, Enterovirus D68, and 
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respiratory syncytial virus (RSV) were tested for using 
individual real-time qRT-PCR assays. A Ct threshold of 
40 was used for all viruses and positive and negative con-
trols were included in each run.

RNA‑seq library generation, sequencing, and data 
processing
RNA was assessed for quality using a Fragment Ana-
lyzer 5300 and RNA concentration was quantified on a 
Qubit FLEX fluorometer. Libraries were generated with 
either the Illumina TruSeq Stranded Total RNA prep 
(20,020,599) or the Illumina Stranded Total Library Prep 
kit (Illumina: 20,040,529) according to the manufactur-
er’s instructions, after using the Illumina Ribo-Zero Plus 
rRNA Depletion Kit (20,037,135). Batch 5 was addition-
ally treated with the Illumina Ribo-Zero Plus Microbiome 
rRNA Depletion Kit (20,072,062). For library genera-
tion, 100  ng of input was used for the Illumina TruSeq 
Stranded Total RNA protocol with 15 cycles of indexing 
PCR, and 20–100 ng of RNA input was used for the Illu-
mina Stranded Total Library Prep protocol with 15 cycles 
of indexing PCR for 100 ng of RNA input and 17 cycles 
of indexing PCR for input RNA ≤ 100 ng. Library quan-
tification and assessment was done using a Qubit FLEX 
fluorometer and the Fragment Analyzer 5300. Libraries 
were normalized and pooled to 2 nM by calculating the 
concentration based off the fragment size (base pairs) 
and the concentration (ng/μl) of the libraries. Sequencing 
was performed on an Illumina NextSeq 2000, using a P3 
200 flow cell with sequencing read lengths of 2 × 101 bp, 
with a target of 40 million reads per sample. Sequencing 
of the nine control samples was done separately using 
an Illumina Novaseq 6000 with 2 × 101 bp read lengths. 
Sequencing data was demultiplexed by the Illumina on-
board DRAGEN FASTQ Generation software. Library 
generation and sequencing was performed by the Uni-
versity of Pittsburgh Health Sciences Sequencing Core 
(HSSC), Rangos Research Center, UPMC Children’s Hos-
pital of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Fastp v0.23.1 [25] was used for quality trimming and 
adapter removal on default parameters. FastQC v0.11.9 
[24] and MultiQC v1.12 [26] were used to check the qual-
ity of all sequence files before and after processing to 
ensure data was ready for analysis.

Taxonomic classification of RNA‑seq reads for detection 
of bacterial and viral pathogens
Taxonomic classification of sequencing reads was per-
formed using Kraken 2 v2.1.2 [27] with default param-
eters. The PlusPF database dated 9/8/2022 (https://​
benla​ngmead.​github.​io/​aws-​index​es/​k2) was used with 
Kraken 2, which was originally built from NCBI RefSeq 
archaeal, bacterial, viral, plasmid, human, UniVec_Core, 

protozoan, and fungal sequences. A Kraken 2 detec-
tion threshold of 3 reads was used for bacterial species 
(selected based on F1 score optimization), while no 
threshold was used for viruses. New pathogens identified 
by Kraken 2 but not included in the clinical panel were 
further validated using BLAST [28], MASH [29] and 
metAnnotate [30], focusing on samples associated with 
the largest estimated abundance for each pathogen.

The normalized abundance of each taxon was cal-
culated as the number of reads per million (RPMs). 
Relative abundance heatmaps were generated using R 
v4.2.1 and the pheatmap v1.0.12 package. For display, 
log10(RPM + 1) values were used to avoid log(0) errors. 
Receiver operator curves (ROCs) were also generated 
in R and the area under the curve (AUC) was computed 
using the pROC package. Pathogen abundance jitter plots 
and top species plots were generated using ggplot2 v3.5.1 
in R [31].

Viral load was estimated from RNA-seq data following 
the method of Graf et  al. [32]. The number of detected 
reads for a virus was divided by the total number of reads 
in the sample and the size of the respective viral genome 
in kilobases, and then multiplied by 1 million to generate 
an RPKM value (reads per kilobase of reference sequence 
per million total sequencing reads).

Microbiome analysis and quantification of bacterial gene 
expression
To explore beta-diversity across all samples, principal 
coordinates analysis (PCoA) was performed using Bray–
Curtis dissimilarities computed from the Kraken2-pre-
dicted taxonomic profiles using the vegan v2.6–8 package 
in R. Alpha diversity was calculated for each sample 
using the Shannon index and compared across groups 
using the Kruskal–Wallis rank sum test. A pairwise 
comparison was also done between groups containing 
pathogens (viral plus bacterial) and no pathogens using 
the Wilcoxon rank sum test. Species enrichment analyses 
were performed by comparing abundances between the 
group of interest (e.g., all samples containing a bacterial 
pathogen) and the comparison group (samples with no 
pathogen detected). Fold-changes and p-values were cal-
culated using R, with p-values calculated based on Wil-
coxon rank sum tests.

Bacterial gene expression analysis was performed 
using Salmon v1.7.0 [33] by mapping RNA-seq reads to 
reference genomes of H. influenzae (NZ_CP085952.1), 
S. pneumoniae (NZ_LN831051.1), and M. catarrhalis 
(NZ_CP018059.1) obtained from NCBI Genbank. Tran-
script counts for all coding sequences were computed 
and imported into R using txImport v1.30.0 [34], and 
the mean expression levels in pathogen-positive samples 
(i.e., separately for MCAT + , SPN + , and HFLU +) were 

https://benlangmead.github.io/aws-indexes/k2
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visualized as jitter plots using ggplot2 v3.5.1. Weakly 
expressed genes were identified as those with an average 
TPM < 10. GO term enrichment analysis was performed 
using a custom R script that compares GO term frequen-
cies between the most highly expressed genes (upper 
quartile) and background frequencies, with GO annota-
tions obtained from the original GFF3 files. Fisher tests 
were performed to calculate p-values, which were FDR-
adjusted using the p.adjust function in R.

Detecting beta‑lactamase genes using RNA‑seq
For the samples that were positive for HFLU based on 
culture tests, sequencing reads classified as non-human 
by Kraken 2 were extracted using extract_kraken_reads.
py and assembled into contigs using the rnaSPAdes 
v3.15.4 with default parameters [35]. Using CARD resist-
ance gene identifier (RGI) software v6.0.1 [36] and default 
database, the contigs were analyzed with the “main” func-
tion of the RGI tool with the “low-quality” and “include-
nudge” parameters. The results were filtered to keep 
“strict” or “perfect” hits to beta-lactamase genes, genes 
acting on antibiotics belonging to the penam drug class, 
and hits with at least 10.0% sequence coverage to the ref-
erence gene.

Viral genome reconstruction and phylogenetic analysis
RefSeq genomes for all viruses of interest were down-
loaded from NCBI. Non-human reads were mapped to 
viral genomes using BBMap v38.86 [37] to create.bam 
files. Mapping-based viral consensus sequences were 
reconstructed using samtools mpileup v1.16.1 with the 
‘-a’ option. Zero-depth positions were kept but converted 
to Ns in consensus sequences. A python script was used 
to calculate whole genome coverage relative to the Ref-
Seq viral genome. Genome coverage was considered 
complete if ≥ 99.5%. FastANI v1.32 was used to calculate 
the average nucleotide identity to the closest reference 
genome for each reconstructed genome.

The mapping-based viral consensus sequences from 
above were queried against the complete NCBI non-
redundant nucleotide database using BLAST [28]. Up to 
35 top matching sequences were downloaded and aligned 
to the reconstructed genome using the MUSCLE algo-
rithm [38]. The multiple genome alignment was used to 
generate a phylogenetic tree with FastTree v2.1.10 [39], 
and FigTree v1.4.4 was used for tree visualization.

Host response gene expression analysis
Host transcript abundance quantification was performed 
using Salmon v1.7.0 [33] with the Human Gencode v39 
reference transcriptome, and the –validateMappings, 
–seqBias, and –gcBias flags. Differential gene expres-
sion analysis was performed using DESeq2 and tximport 

in R [40]. Related statistical analyses are described in 
the following section. Heatmaps were produced in R 
using pheatmap, v1.0.12 jitter plots using ggplot2 v3.5.1, 
and volcano plots using the EnhancedVolcano package 
v1.14.0.

Cell type enrichment analysis
Cell type enrichment analysis was performed using xCell 
v1.1.0 [41] as implemented in the webserver at https://​
comph​ealth.​ucsf.​edu/​app/​xcell. Non-significant enrich-
ment values (> 0.2) were omitted and only cell types with 
adjusted p values < 0.1 were explored. Heatmaps of cell 
type enrichment scores were generated using R v4.2.1 
and pheatmap v1.0.12.

Statistical analysis
Differentially expressed genes (DEGs) were detected 
by comparing samples positive for viruses only versus 
samples positive for bacteria only based on culture or 
qRT-PCR testing. In the design formula for the “DESe-
qDataSetFromTximport” function, we also controlled for 
potential confounding variables “batch number,” “sex,” 
and “age (scaled)”. Log2 fold changes and adjusted p-val-
ues (q-values) were calculated using the p.adjust function 
(Benjamini–Hochberg correction) in R for all genes, and 
a significance threshold of q ≤ 0.05 was used to identify 
DEGs. Function enrichment analysis of genes with sig-
nificantly increased expression in the viral and bacterial 
groups was performed using EnrichR [42] (accessed June, 
2023) with the GO Biological Process 2021 ontology and 
an FDR threshold of 0.05. For remaining batches 2–5, 
potential batch effects were examined using PCA and by 
quantitative comparison of viral and bacterial abundance 
values. No remaining batch effects were detected visually 
or quantitatively (Additional File 1: Fig S1).

A power analysis of the RNA-seq dataset was done 
using the RnaSeqSampleSize R package. A power analy-
sis was conducted using the smallest group size in our 
cohort (N = 31 samples with bacterial infections), and 
the following parameters which were measured for our 
dataset (rho = 3, lambda0 = 24.88, phi0 = 12.4, f = 0.05, 
alpha = 0.01, m = 39,242).

Construction of host response classifier 
and cross‑validation
To perform feature selection, we started with the viral 
(n = 273) and bacterial (n = 548) upDEGs as candidate 
features. We then computed their variance-stabilized 
transformed (VST) expression levels across all samples, 
and compared these expression levels across the two 
groups using two-sample t-tests to derive p-values. The 
top 25 viral and top 25 bacterial genes based on p-value 
were then further filtered to remove correlated genes, 

https://comphealth.ucsf.edu/app/xcell
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pseudogenes, and non-protein-coding genes (e.g., lin-
cRNAs). Correlated gene pairs (Pearson r > 0.75) were 
detected using a correlation matrix computed with the 
Hmisc package v5.2.2, and the gene with the largest mean 
absolute correlation was removed with the “findCorrela-
tion” function. The above procedure resulted in a 10-gene 
set associated with bacterial infections and an 8-gene set 
associated with viral infections.

Using the above gene sets, random forest classifi-
ers were then built using the caret package (v7.0.1). 
Four independent models were trained to classify clini-
cal viral-positive and RNA-seq viral-positive patients 
using the 8-gene viral signature, as well as clinical bac-
terial-positive and RNA-seq bacterial-positive patients 
using the 10-gene bacterial signature. The default ntree 
parameter value of 500 was used and the recommended 
mtry parameter value of 3 was chosen as it is nearest 
to the square root of the number of features (n = 8 and 
n = 10). Ten-fold cross-validation was implemented 
via the `trainControl` function (`method = "cv", num-
ber = 10`). This procedure divided the dataset into 10 
subsets, iteratively training on 9 subsets while testing on 
the remaining one. Probability predictions were enabled 
(`classProbs = TRUE`), and classification performance 
(sensitivity, specificity, and AUC) was assessed using 
the `twoClassSummary` function. The final AUC was 
calculated as the mean AUCs of the 10 cross-validation 
iterations.

Results
Cohort characteristics
A subset of 221 pediatric patients presenting with symp-
toms of acute sinusitis from a previous study [6] (Feb 
2016 to Mar 2022), as well as nine healthy individuals as 
controls (Apr 2021 to June 2022), were selected for NP 
RNA-seq (Fig. 1, Table 1). Further details are provided in 
the Methods and in Shaikh et al. [6]. One naris was sam-
pled using a NP swab and this was used for viral qRT-
PCR, bacterial culture, and RNA sequencing [23]; 171 
(77%) and 169 (76%) of the children tested positive for 
at least one bacteria or virus, respectively. Thirty-three 
children were positive for bacteria but not virus, and 31 
were positive for virus but not bacteria. Parents assessed 
symptom severity daily during the 10 days following diag-
nosis. A power analysis of our RNA-seq dataset revealed 
an estimated 96% power to detect differentially expressed 
genes with fold changes ≥ 2 and assuming a group size of 
N = 31 (minimum used in later analyses) (see Methods).

Bacterial pathogen detection by metatranscriptomic 
analysis of NP samples
To identify potential bacterial and viral pathogens in the 
221 samples, we performed metatranscriptomic sequenc-
ing of RNA derived from NP swabs. First, we aimed to 
quantify the abundance of three bacterial pathogens of 
interest—S. pneumoniae (SPN), M. catarrhalis (MCAT), 
and H. influenzae (HFLU)—as these pathogens are com-
monly isolated in children with bacterial sinusitis4. We 
note that our use of the term “pathogen” does not imply 
that these organisms are necessarily the causative agents 
of sinusitis infections. After quality filtering, we per-
formed taxonomic classification of the sequencing reads 
using Kraken 2 [27]. The relative abundance of the three 
bacterial pathogens (shown in Fig.  2A) was calculated 
based on the normalized abundance of reads (reads per 
million, RPM) that mapped to each species. One or more 
of these three bacterial pathogens were detected in a 
total of 177 patients (80%). Two or more bacterial patho-
gens were detected in 89 (40%) patients, and 25 (11%) of 
patients had all three bacterial pathogens detected. On an 
individual basis, SPN was detected in 73 (33%), MCAT in 
137 (62%), and HFLU in 81 (37%) of patient samples. The 
clinical culture and RNA-seq-based results for bacterial 
detection for each patient are included in Additional File 
2: Tables S1 and S2.

Next, we examined the extent that the calculated abun-
dance of these bacterial pathogens from RNA-seq agreed 
with their presence/absence based on culture. For all 
three pathogens, we detected a significant increase in 
RNA-seq abundance in those with a positive culture (all p 
values < 1 × 10−15), demonstrating concordance between 
the metatranscriptomic data and culture (Fig.  2B). 
Some pathogen-negative samples based on culture had 
an RNA-seq pathogen abundance greater or equal to 
the mean abundance seen in positive samples. We then 
assessed the ability of the RNA-seq data to predict the 
culture-based test results for each pathogen, and gener-
ated ROCs by varying the detection threshold (Fig. 2C). 
HFLU infections could be detected with the highest 
accuracy by RNA-seq with an AUC of 0.95, SPN infec-
tions with an AUC of 0.89, and MCAT infections with 
an AUC of 0.82. Using a threshold of 3 reads per mil-
lion, HFLU was detected with a sens/spec of 94%/90%, 
SPN with 81%/89% and MCAT with 85%/64% (Table 2). 
Additionally, none of the nine negative control patients 
had detectable HFLU or SPN at these thresholds, while 
2 patients (22%) had detectable MCAT (Additional File 1: 
Fig S2A).
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Beta‑lactamase gene detection in HFLU‑positive samples
We next examined whether metatranscriptomics could 
identify potential resistance genes associated with HFLU. 
Culture-based tests for beta-lactamase were performed 
for all HFLU-positive samples, and these were used as 
the reference standard to analyze the accuracy of RNA-
seq-based detection. We assembled all non-human reads 
from samples that were clinically positive for HFLU 
(N = 69) and used the Comprehensive Antibiotic Resist-
ance Database (CARD) [36] to detect beta-lactamase 

genes with at least 10% coverage (Additional File 1: Fig 
S3). Beta-lactamase genes were detected in 74% (20/27) 
of the samples associated with resistant HFLU, and in 
33% (13/42) of the samples associated with non-resist-
ance HFLU, which reflects a significant (2.1-fold) increase 
in detected beta-lactamase genes in the resistant samples 
(p = 0.002, Fisher exact test). The complete list of genes 
and the portion of the reference genome detected for 
each hit can be found in Additional File 2: Tables S3-S5.

Fig. 1  Overview of study design. The study cohort was comprised of 221 children with acute sinusitis who underwent collection of NP swabs. 
Culture was used to detect three bacterial species (Haemophilus influenzae, Streptococcus pneumonia, Moraxella catarrhalis) and qRT-PCR was used 
to detect 12 viruses of clinical relevance. Haemophilus influenzae isolates were tested for beta-lactamase production (N = 69). Parallel to this, 
RNA extraction from NP swabs and sequencing was also done to conduct metatranscriptomic analysis using a bioinformatics approach. Using 
the sequencing data, several analyses were performed: pathogen detection and quantification, reconstruction of detected respiratory viruses, 
detection of beta-lactamase genes, and transcriptomic analysis of host responses
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Metatranscriptomic detection and analysis of respiratory 
viruses
To examine the ability of metatranscriptomics to detect 
viral infections, we first focused on respiratory viruses 
identified using qRT-PCR. Viruses tested for included 
influenza A (INFA), influenza B (INFB), influenza C 
(INFC), human metapneumovirus (MPV), human rhi-
novirus (HRV, which tested for rhinovirus types A, B, 
and C), parainfluenza virus 1 (PIV1), parainfluenza 
virus 2 (PIV2), parainfluenza virus 3 (PIV3), parainflu-
enza virus 4 (PIV4), respiratory syncytial virus (RSV, 
types A and B), human adenovirus (ADV), and entero-
virus D68 (EVD68). One or more viruses were detected 
by metatranscriptomics in 175 patients (79%), two 
or more in 101 patients (46%), and three or more in 
36 patients (16%). HRV was detected most frequently 
(45%), followed by MPV (14%) and INFA (13%).

Next, we examined the extent that the RNA-seq-
based predictions matched viral presence/absence 
based on the qRT-PCR. As shown visually in Fig.  3A, 
the relative abundance of viruses detected by metatran-
scriptomics was in strong agreement with the results 
of qRT-PCR-based tests, with lower qRT-PCR cycle 
threshold (Ct) values corresponding to higher RPM 
values in RNA-seq. A significant correlation (r = 0.75, 
p = 1.3 × 10−46) was detected between 1/Ct values and 
viral load calculated as log10(reads per kilobase million, 

rpkm) [32] (Fig.  3B), and this relationship was sig-
nificant (p < 1 × 10−5) for all viruses (Additional File 
2: Table  S6). However, some viruses (e.g., ADV, HRV) 
had weaker correlations (r < 0.5). Samples contain-
ing viruses detected by qRT-PCR but not by RNA-seq 
had significantly higher cycle thresholds (mean = 34.7) 
compared to true positives (mean = 23.2; t-test 
p-value = 5.5 × 10−5), which has been reported in previ-
ous RNA-seq studies [43]. For nine viruses, we detected 
a significant (p < 0.05) increase in metatranscriptomic 
abundance in those with a positive qRT-PCR result 
(Fig. 3C). The three non-significant cases (INFC, PIV1, 
EVD3) were viruses detected in very few (1 to 6) indi-
viduals, limiting statistical power.

We then calculated the accuracy of viral detection by 
using the results of the qRT-PCR tests as the ground 
truth. Due to the uniqueness of viral sequences, we found 
that a very low threshold (≥ 1 RPM) was sufficient to 
distinguish virus-positive from negative samples. Using 
this threshold, we calculated the sensitivity and specific-
ity of metatranscriptomic pathogen detection for each 
of the 12 viruses as shown in Table  2. Nine out of the 
12 viruses were detected with 90–100% sensitivity and 
specificity, while INFC, HRV, and ADV were detected 
with lower accuracy. Additionally, none of the 12 viruses 
were detected in the negative control samples. Overall, 
we were able to detect the 12 viruses with an average sen-
sitivity/specificity of 86%/92%. These accuracies are con-
sistent with other studies performing sequencing-based 
pathogen detection using NP samples [32, 43].

RNA‑seq uncovers additional pathogens and alternate 
explanations of disease etiology
By sequencing total RNA within a sample, metatran-
scriptomics has the potential to detect additional patho-
gens beyond those tested by culture or qRT-PCR. We 
therefore screened our RNA-seq dataset for additional 
pathogens previously associated with URTIs and/or 
sinusitis infections, as well as non-URTI pathogens and 
opportunistic pathogens, and further validated the iden-
tified species using additional bioinformatic approaches 
(see Methods). Across the 221 patient samples, we 
detected 22 additional pathogens that were not tested for 
clinically, including 11 bacteria and 11 viruses (Fig. 4, see 
Additional File 2: Table S7 for abundance profiles). These 
species were then ranked in terms of their maximum rel-
ative abundance within a sample (Fig. 4).

Newly identified bacterial pathogens include fourteen 
species listed in Fig.  4. The most notable identifications 
include Mycoplasma pneumoniae and Chlamydia pneu-
moniae, which were not included in the clinical panel 
but have been previously implicated in pediatric sinusitis 
and URTIs [44, 45]. In addition, opportunistic pathogens 

Table 1  Demographic and clinical characteristics of pediatric 
patient participants with sinusitis. Demographic and clinical 
data for study cohort comprised of 221 children with persistent 
or worsening symptoms consistent with a diagnosis of acute 
sinusitis. Pathogen detection for 3 common bacteria and a panel 
of 14 viruses was accomplished using culture and qRT-PCR, 
respectively

a Median (interquartile range),
b Only samples positive for Hflu were tested (N = 69)

Demographics

Age (years)a 4.8 (3.3–6.4)

Gender

  Male 115

  Female 106

Clinical characteristics at time of diagnosis
  Number of days with symptomsa 14 (9–16)

  Fever at any time during the illness 121

  History of asthma 39

  History of allergic rhinitis 64

  Coloured nasal discharge 148

Clinical lab test results at time of diagnosis
  One or more bacteria detected 171

  One or more viruses detected 169

  Positive for beta-lactamaseb 27
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Fig. 2  Metatranscriptomic detection of bacterial pathogens in NP samples from children with clinically diagnosed acute sinusitis. A Heatmap 
showing the detected abundance of three bacterial pathogens (H. influenzae, M. catarrhalis, S. pneumoniae) in patient metatranscriptomes. 
For each bacterium, the culture-based test result (positive—grey, negative—white) is shown on the left of the column, and the estimated RNA-seq 
abundance is depicted on the right of the column as a color gradient (absent—white, low—yellow, high—dark blue). Each row in the heatmap 
and tip in the hierarchical tree corresponds to an individual patient sample. B Boxplots depicting pathogen abundance in positive ( +) 
versus negative ( −) samples (labeled on X axis) defined based on culture. The boxes show the interquartile range and median line, and the whiskers 
show the variability extending to the furthest data points within 1.5 times above and below the interquartile range. Outliers outside of these 
ranges are shown as data points. Two-tailed t-test p-values for positive versus negative samples are shown above each plot. Red dashed lines 
indicate the detection threshold equivalent to 3 RPM. C ROC curves illustrating specificity and sensitivity of metatranscriptomic pathogen detection 
with AUC values displayed above. In each ROC curve, the circled data point indicates the true positive rate (TPR) and false positive rate (FPR) 
associated with the 3 RPM threshold

Table 2  Sensitivity and specificity metatranscriptomics for detection of bacteria identified by culture or viruses identified by qRT-PCR

Sensitivity (%) Specificity (%)

Bacteria
  Moraxella catarrhalis (MCAT) 85 64

  Streptococcus pneumoniae (SPN) 81 89

  Haemophilus influenzae (HFLU) 94 90

Viruses
  Influenza A (INFA) 100 94

  Influenza B (INFB) 100 97

  Influenza C (INFC) 33 96

  Human metapneumovirus (MPV) 100 91

  Respiratory syncytial virus (RSV) 90 92

  Human rhinovirus (HRV) 73 77

  Parainfluenza virus 1, Human respirovirus 1 (PIV1) 100 94

  Parainfluenza virus 2, Human orthorubulavirus 2 (PIV2) 100 99

  Parainfluenza virus 3, Human respirovirus 3 (PIV3) 100 91

  Parainfluenza virus 4, Human orthorubulavirus 4 (PIV4) 91 91

  Adenovirus (ADV) 44 97

  Enterovirus D68 (EVD68) 100 90
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including Fusobacterium nucleatum, Moraxella spp., and 
others were also detected (Fig. 4), but some of these likely 
have a commensal role in the nasopharynx. Interest-
ingly, we also detected periodontitis-associated bacteria, 
Treponema medium, Prevotella intermedia, and Tan-
nerella forsythia [46], in a few (N = 1 to 4) samples, and all 
three co-occurring in the same patient. Follow-up inves-
tigation of this patient revealed that they were admit-
ted to an emergency room with a severe tooth infection 
1 year after the NP swab sample was taken.

Newly identified viral pathogens with the highest abun-
dance include four human coronaviruses known to cause 
upper respiratory infections (NL63, OC43, HKU1, and 
229E). We also detected parechovirus A and cardiovirus 

B (saffold virus), which have been associated with respir-
atory illness in children [47, 48], as well as other viruses 
that are not typically associated with respiratory infec-
tions including mamastrovirus 9, enteroviruses A and B, 
human gammaherpes virus 5, human betaherpes virus 5, 
and sequences related to murine leukemia virus (Fig. 4).

Of the 19 samples that had no pathogen detected by 
culture or qRT-PCR, 11 contained identified pathogens 
based on RNA-seq profiling. Three of the 11 samples 
(circled in Fig.  4) contained known pathogens detected 
at high abundance (ranging from ~ 250 to 60,000 RPM) 
that were not included in the clinical pathogen panel: 
the coronaviruses NL63 and 229E, and the bacterium, 
Chlamydia pneumoniae. Eight of the 11 samples had 

Fig. 3  Detection of common respiratory viruses in NP metatranscriptomes. A Abundance heatmap for viruses detected in NP metatranscriptomes 
for 221 patients. For each virus, the qRT-PCR result is shown on the left of the column as a color gradient (negative—white, high to low cycle 
threshold values—light gray to black), and the estimated RNA-seq abundance is depicted on the right of the column as a color gradient 
(absent—white, low—yellow, high—dark blue). Each row in the heatmap and tip in the hierarchical tree corresponds to an individual patient 
sample. B qRT-PCR abundance (1/ cycle threshold) versus metatranscriptomic viral load (log10 of the RPKM). The estimated viral load from RNA-seq 
is significantly correlated with 1/Ct value from qRT-PCR. C Metatranscriptomic abundance of respiratory viruses in negative ( −) versus positive 
( +) samples (labelled on X axis) defined by qRT-PCR test result. The boxes show the interquartile range and median line, and the whiskers show 
the variability extending to the furthest data points within 1.5 times above and below the interquartile range. Outliers outside of these ranges 
are shown as data points. Two-tailed t-test p-values for positive versus negative samples are shown above each plot. Red dashed lines indicate 
the detection threshold equivalent to 1 RPM
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pathogens detected by RNA-seq at variable levels exceed-
ing 10 RPM but not by qRT-PCR or culture, including 
influenza B (N = 1), parainfluenza virus 1 (N = 1), SPN 
(N = 1), MCAT (N = 4), and HFLU (N = 1).

Ultimately, these additional detected pathogens high-
light the ability of RNA-seq to provide a more complete 
picture of the microbiome and virome present in acute 
sinusitis samples and suggest an expanded panel of 
viruses and bacterial pathogens to be used in future clini-
cal workflows.

Viral genome reconstruction and subtyping 
from host‑derived metatranscriptomes
By aligning the RNA-seq reads to reference genomes of 
identified viruses, we were able to reconstruct partial to 
complete genomes for a total of 196 viruses across 163 
samples, including 25 different human pathogenic viruses 
(Fig. 5A). In addition to the 12 viral groups from the clini-
cal panel (Fig. 3), genomes were reconstructed for 9 addi-
tional respiratory viruses (e.g., coronaviruses) not tested 

for clinically. We also reconstructed genomes of entero-
virus A and B, WU polyomavirus which has been associ-
ated with respiratory infections [49], and mamastrovirus 
9 which was identified in a gastroenteritis outbreak [50]. 
A total of 31 (15%) were 100% complete, while 60 (30%) 
had completeness > 90% (Additional File 2: Table  S8). 
All reconstructed viral genomes were phylogenetically 
verified by sequence comparison to related genomes in 
NCBI through BLAST, with average nucleotide identities 
(ANIs) ranging from 95–100%.

To explore the use of reconstructed genomes for viral 
subtyping, we focused on the predictions for influenza 
A and B, since these were subtyped clinically using qRT-
PCR. The subtyping results using reconstructed influenza 
genomes showed excellent agreement with the clinical 
results, with Influenza A subtypes H1N1 and H3N2 hav-
ing 100% (15/15) agreement and Influenza B subtypes 
Yamagata and Victoria having 82% agreement (9/11) with 
qRT-PCR results (Additional File 2: Table S9).

Fig. 4  Metatranscriptomics of NP samples from children with acute sinusitis identified organisms not detected byqRT-PCRor culture. The 
organisms included in the heatmap are a subset of the full set of organisms detected by RNA-seq that exceed minimum abundance thresholds 
and include human pathogenic bacteria and viruses (see Additional File: Table S7 for full dataset). The organisms are sorted vertically based 
on their maximum relative abundance within a sample (across 221 samples). The heatmap displays the relative abundance of each organism 
in each sample as estimated by Kraken 2. The left heatmap includes samples with clinically identified pathogens by qRT-PCR or culture (N = 202), 
and the right heatmap includes 19 samples without a pathogen detected by qRT-PCR or culture. For the latter samples, several samples contain 
additional organisms identified by metatranscriptomics that are plausible causes of sinusitis. The barplot on the right depicts the maximum relative 
abundance of each pathogen across all samples
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We then focused on several cases of interest, perform-
ing a deeper genomic and phylogenetic analysis of newly 
reconstructed genomes. Three examples of reconstructed 
viral genomes are shown in Fig. 5B, including a genome 
of a novel HCoV-OC43 strain, an RSVB genome, and an 
enterovirus D68 genome. All three of these genomes are 
unique from other strains in the NCBI database (Fig. 5B) 
as they formed distinct lineages in phylogenetic analysis 
(Fig.  5C). All three of the genomes also showed broad 
sequencing coverage across the genome.

Microbiome analysis of patient metatranscriptomes
Next, we focused on analysis of microbial diversity 
and gene expression patterns across all 221 samples. 
Although the majority reads were of human origin 
(99% average across datasets), the remaining 1% could 
be targeted by microbiome analysis (Additional File 
2: Table  S10). Microbial reads classified into bacterial 
(63.8%), viral (35.3%), and fungal species (2.5%), with 
viral abundance likely skewed by the high frequency of 
viral infections (N = 31, 14%). An abundance heatmap of 
the most abundant bacterial and viral species is included 
in Additional File 1: Fig S4. PCoA ordination plots 
revealed no clear pattern of clustering based on overall 

microbiome profiles (Additional File 1: Fig S5A). In addi-
tion, patients with viruses, bacterial pathogens, or both 
detected displayed similar levels of alpha diversity (Shan-
non Index) (Additional File 1: Fig S5B). However, patients 
with no pathogens detected had higher Shannon diver-
sity levels than patients with pathogens (viral and/or bac-
terial) detected (p < 0.05).

A species enrichment analysis was performed to iden-
tify additional species that are associated with the bac-
terial or viral infections. This analysis re-discovered the 
expected species for bacterial infections (e.g., HFLU, 
SPN, and MCAT) and common viruses in viral infections 
(Influenza A and Rhinovirus A), but did not detect addi-
tional significant abundance shifts in the microbiome 
with p < 0.01 (Additional File 1: Fig S5C).

We then analyzed the HFLU, SPN, and MCAT tran-
scriptomes across all 221 patients to examine bacterial 
transcriptome coverage and patterns of gene expression 
(Fig. 6). As visualized in the heatmap shown in Fig. 6A, 
the bacterial transcriptomic expression profiles cor-
responded strongly with the culture results as expected 
(e.g., HFLU gene expression detected in HFLU positive 
patients). In addition, the analysis revealed broad tran-
scriptomic coverage for each bacterial pathogen, with 

Fig. 5  Reconstructed viralgenomes from children with clinically diagnosed acute sinusitis. A Bar graph depicting the number of reconstructed 
genomes for various species of respiratory viruses across the full dataset (N = 196 total viruses reconstructed from 163 samples). B Read pileups 
for three selected samples showing sequencing reads mapped to reference genomes of human coronavirus (HCoV) OC43 (NC_006213), RSV 
(NC_001781), and enterovirus D68 (NC_038308). C Phylogenetic analysis of three reconstructed viral genomes and their top 25 closest matching 
complete genomes from BLAST. Each newly reconstructed virus (red) is a unique strain that clusters as a distinct branch within its phylogenetic tree
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the majority of genes having detectable expression. In 
HFLU, SPN, and MCAT positive patients, 1606 (89% of 
HFLU genes), 1654 (78% of SPN genes), and 1599 (87% 
of MCAT genes) were detected by RNA-seq above mini-
mum expression thresholds (Additional File 2: Tables 
S11-S13). For all three pathogens, GO-term enrichment 
analysis revealed that ribosomal genes were significantly 
enriched (q < 0.001) among highly expressed (upper quar-
tile) genes (Additional File 2: Table  S14). In addition to 
ribosomal genes, we also identified other key genes 
including virulence factors with high expression levels in 
the three pathogens. Virulence-related genes expressed 
at particularly high levels included H. influenzae genes 
ompA (outer membrane protein A) and hfq (host factor 
I), S. pneumoniae psaA (pneumococcal surface adhesin 
A), spxB (pyruvate oxidase), bgaA (beta-galactosidase), 
and ply (pneumolysin), and M. catarrhalis genes sodA 
(superoxide dismutase) and the response regulator, ompR 
(Fig. 6B). These results suggest that virulence genes rel-
evant to bacterial infection as well as ribosomal genes 

are highly expressed by these bacterial pathogens during 
infection of the nasopharynx.

Host‑response expression profiles distinguish bacterial 
from viral infections
Although RNA-seq analysis was capable of detecting 
pathogens directly from reads, most reads within RNA-
seq samples were host (human) derived, ranging from 
64.7–99.9% (Additional File 2: Table S10), which enables 
host-response profiling to potentially identify host bio-
markers and immune responses associated with disease 
etiology [15, 51–53].

Cell type enrichment analysis using xCell [41] revealed 
enrichments of specific immune cell types, including 
neutrophils, monocytes, and macrophages, across the 
samples (Additional File 1: Fig S6A). Although immune 
cell type enrichments showed significant variation across 
samples, other cell types such as epithelial cells showed a 
more uniform profile across all samples (Additional File 
1: Fig S6A). We then analyzed the association between 

Fig. 6  Transcriptomic analysis of bacterial gene expression in patients with SPN, HFLU, or MCAT detected by culture. A Gene expression levels of all 
SPN, HFLU, and MCAT genes (Y axis) across patients (X axis). Above the heatmap, patient samples have been ordered based on presence/absence 
of SPN, HFLU, and MCAT as detected by culture. The heatmaps reveal broad expression across the SPN, HFLU, and MCAT transcriptomes with high 
relative expression associated with bacteria-positive patients as expected. B Scatterplots of mean expression levels for individual HFLU, SPN, 
and MCAT genes across all HFLU, SPN, and MCAT positive patients, respectively. Genes with high relative expression (i.e., above the 75.th percentile) 
were investigated further and associated primarily with translation (ribosomal genes, colored blue) as well as genes encoding virulence factors 
(colored red)
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the enrichments of each cell type and presence/absence 
of bacterial and viral pathogens based on clinical test-
ing. M1 macrophage enrichments had the highest accu-
racy (AUC = 0.75) for predicting patients with viruses 
detected, while neutrophil enrichments had the highest 
accuracy (AUC = 0.76) for predicting patients with bacte-
rial pathogens (Additional File 1: Fig S6B).

To further identify differentially expressed genes 
(DEGs) associated with bacterial versus viral infections, 
we compared host gene expression profiles of patients 
with bacterial pathogens to those with viral pathogens 
based on clinical diagnostic testing (culture/qRT-PCR) 
(Fig.  7A). Due to the presence of many (N = 138) com-
plex samples containing a mixture of viral and bacterial 
pathogens, we chose to simplify the initial comparison 
and compared samples with only bacterial pathogens 
(N = 33) to those with only viral pathogens (N = 31) but 

subsequently analyzed all 221 samples. A total of 821 
significant DEGs were detected with q < 0.001, of which 
548 genes had increased expression in bacterial-positive 
patients and 273 genes had increased expression in viral-
positive patients (Fig.  7A, Additional File 2: Table  S15). 
We termed these genes as “bacterial upDEGs” and “viral 
upDEGs.”

Based on function enrichment analysis, bacterial 
upDEGs were significantly associated with neutro-
phil regulation, regulation of inflammatory response, 
response to lipopolysaccharide, and response to molecule 
of bacterial origin (Fig.  7B). Bacterial upDEGs included 
PTGS2 (sixfold increase in bacterial-positive patients, 
q = 3.1 × 10−7), S100A9 (fourfold increase, q = 4.2 × 10−6, 
PLAUR​ (fivefold increase, q = 7.3 × 10−6), TNFAIP3 
(fourfold increase, q = 1.3 × 10−5), IL1A (sixfold increase, 
q = 1.0 × 10−4), IL1B (sixfold increase, q = 4.0 × 10−5), 

Fig. 7  Identification of differentially expressed host genes indicative of host-responses to bacterial and viral infection in acute sinusitis patients. A 
Volcano plot of differentially expressed genes between samples with only bacterial pathogens and samples with only viral pathogens according 
to qRT-PCR and culture test results. Human genes shown in the upper right quadrant have significantly increased transcript abundance in samples 
with bacteria (bacterial upDEGs), and genes in the upper left quadrant have significantly increased transcript abundance in samples with virus(es). 
Genes are partitioned in the plot based on p-value significance thresholds. B, C Biological functions and pathways that are significantly enriched 
among bacterial and viral upDEGs, calculated using enrichR. For each function term, the associated adjusted p-value and number of genes 
is depicted. D Example bacterial and viral upDEGs and their expression levels (transcript abundance) across four categories of patients: those 
with neither bacteria nor virus detected by culture or qRT-PCR; those with only bacteria, those with only virus, and those with both a bacteria 
and virus. The results of Wilcoxon rank sum tests are shown for all pairwise comparisons (ns: p > 0.05; *: p ≤ 0.05, **: p ≤ 0.01; ***: p ≤ 0.001; ****: 
p ≤ 0.0001)
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CXCL2 (fourfold increase, q = 1.3 × 10−5), and NFKBIA 
(fourfold increase, q = 1.8 × 10−5) (Fig. 7D).

Viral upDEGs were found to be significantly associated 
with cytokine signaling, defense response to virus, T cell 
receptor signaling, and inflammatory response (Fig. 7C), 
which are related to viral immune response pathways. 
Viral upDEGs included CXCL11 which was increased 
33-fold in virus-positive patients (q = 4.9 × 10−23), 
CXCL10 (15-fold increase, q = 2.6 × 10−15), CCL8 
(23-fold increase, q = 2.3 × 10−6), PRF1 (fourfold 
increase, q = 3.8 × 10−9), and IFI27 (twofold increase, 
q = 8.5 × 10−7), which represent putative biomarkers of 
viral infection in our analysis (Fig. 7D).

In general, representative viral and bacterial upDEGs 
had lower expression levels for samples in which no bac-
teria or virus was detected by qRT-PCR/culture, and 
higher expression levels for samples containing both 
a virus and bacterial pathogen (Fig.  7D). Interestingly, 
there are several exceptions to this pattern including four 
samples that had a strong antiviral response despite there 
being no virus detected by qRT-PCR/culture. Deeper 
investigation of these samples by RNA-seq revealed that 
three of them contained respiratory viruses (two corona-
viruses and influenza B) (Fig. 4B) that were not detected 
by the qRT-PCR tests. Other exceptions include two sam-
ples which had no bacterial pathogen detected by cul-
ture/qRT-PCR but had a strong antibacterial response. 
One of these samples (sample 1303) had a bacterial path-
ogen (MCAT) identified in high abundance by RNA-seq. 
These results suggest that host-response profiling may 
provide an indication of viral or bacterial infection when 
traditional tests fail to detect a pathogen.

Magnitude of host responses correlates with viral 
and bacterial pathogen abundance
If the identified viral and bacterial upDEGs are genuine 
biomarkers of viral and bacterial infections, respectively, 
then their levels of expression should correlate with the 
abundance of viral and bacterial pathogens estimated 
from RNA-seq. To test this hypothesis, we calculated 
the total bacterial pathogen abundance as the sum of the 
relative abundance of the pathogens SPN, HFLU, and 
MCAT. We then binned all samples into ten groups, with 
group 1 having the lowest bacterial pathogen abundance, 
and group 10 having the highest. We then repeated this 
analysis for viral pathogens, summing the total abun-
dance of 12 viral pathogens as well as the coronaviruses 
that were clearly present based on RNA-seq data, but 
missing from the clinical test.

As shown in Fig. 8A, with increasing abundance of bac-
terial sinusitis pathogens (MCAT, SPN, HFLU), there is 
a clear increase in expression levels of bacterial upDEGs. 
To quantify this pattern, for each sample we calculated 

the “magnitude” of the bacterial and viral host response 
as the average expression level (Z-score) of the bacterial 
and viral upDEGs. As shown in Fig.  8B, the magnitude 
of bacterial host response correlated significantly with 
bacterial pathogen abundance (Pearson r = 0.50, two-
tailed p = 1.6 × 10−15). The same pattern was also seen 
for viruses: that is, the abundance of viral pathogens 
also correlated significantly with the magnitude of viral 
host-response (Pearson r = 0.33, two-tailed p = 5.8 × 10−7) 
(Fig.  8C,D). This trend is also apparent by the distribu-
tions of bacterial and viral host-response scores for each 
clinical group (culture/qRT-PCR testing) including the 
nine negative controls, which showed the same pat-
tern as the samples with no pathogens detected (Addi-
tional File 1: Fig S2B). Both the bacterial and viral host 
responses however did not correlate with other clinical 
features including the duration of cold symptoms and 
symptom severity (Fig.  8A). Although these pathogen-
host-response correlations are a general pattern, not all 
samples display this trend. For example, several samples 
with high bacterial pathogen abundance lack a strong 
bacterial host response. In addition, one outlier (marked 
* in Fig. 8A) shows an individual with a low detected bac-
terial pathogen abundance but a strong bacterial host 
response. This could indicate an immune response to an 
unknown bacterial species.

In addition to the association between host-response 
and pathogen abundance, we also tested for host-
response correlations with other clinical metadata. A 
weaker but significant (r = 0.33, p = 6.6 × 10−7) host-
response pattern was detected between a subset of genes 
and patient symptom severity scores (Pediatric Rhinosi-
nusitis Symptom Scale, PRSS) at the time of diagnosis. A 
total of 45 genes were differentially expressed as a func-
tion of PRSS, which subdivided into 2 expression clusters 
(Additional File 1: Fig S7). Cluster 1 was positively corre-
lated with PRSS and includes the following genes: MET-
TL7B, MMP3, PRF1, GNLY, MMP1, FPR3, GIMAP6, 
OLFML2B, DESI1, IL12RB2. Function enrichment analy-
sis revealed that cluster 1 was associated with a response 
to infection (cellular defense response, natural killer cell 
mediated immunity, and cellular response to cytokine 
stimulus). Other pathways such as proteolysis and pyrop-
tosis are also involved in innate host immune response by 
eliminating and degrading infected cells [54, 55].

RNA‑seq classifies patients into distinct groups 
with unique pathogen‑host response profiles
After examining host responses to bacterial and viral 
infections individually, we considered how bacterial and 
viral relative abundance together impact host responses 
within patients. To investigate this, we used the RNA-seq 
abundance to bin samples into four groups: those with 
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low bacterial / low viral pathogen abundance (N = 60, 
27%), high viral / low bacterial pathogen abundance 
(N = 51, 23%), high bacterial / low viral pathogen abun-
dance (N = 51, 23%), and high bacterial / high viral path-
ogen abundance (N = 59, 27%). Here, the thresholds of 
“high” and “low” pathogen abundance based on RNA-seq 
estimated levels (≥ 60th percentile) and not the presence/

absence classification obtained from qRT-PCR and cul-
ture-based testing.

The four groups of patients display distinct host 
response signatures (Fig.  8E,F). As expected, samples 
with low bacterial and low viral pathogen abundance tend 
to have weak bacterial and antiviral responses (Fig. 8E). 
Samples with high viral abundance but low bacterial 

Fig. 8  Host-response correlates with relative abundance of bacterial and viral pathogens. A Expression heatmap of bacterial upDEGs (bacterial 
host response genes), with samples (columns) sorted by total metatranscriptomic bacterial pathogen abundance. The associated metadata 
for all samples is also plotted above the heatmap. * Also shown is an outlier sample associated with a strong bacterial host response but with low 
detected abundance of MCAT, HFLU, or SPN. B Bacterial host response score versus metatranscriptomic bacterial pathogen abundance. The 
bacterial host response score was calculated as the mean expression level (Z-scores) of all the bacterial upDEG genes. C Expression heatmap 
of viral upDEGs (viral host response genes), with samples (columns) sorted by metatranscriptomic viral pathogen abundance. D Viral host response 
score versus metatranscriptomic viral pathogen abundance. The viral host response score was calculated as the mean expression level (Z-scores) 
of all the viral upDEG genes. E Heatmap of bacterial and viral host responses (upDEGs), where samples (columns) have been sorted into four 
groups based on high or low bacterial/viral pathogen abundance, with high considered as a 60th percentile or greater relative abundance. In 
general, samples with low bacterial and viral abundance tend to lack a bacterial/viral host response, whereas samples containing bacteria, viruses, 
or both displayed the appropriate response. F Jitter plots of the bacterial and viral host response scores across four categories of samples. Bacterial 
and viral host response scores were calculated by averaging the expression level Z-scores of all bacterial and viral upDEGs, respectively
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abundance display a strong antiviral pattern and a weak 
bacterial response. Samples with high bacterial pathogen 
abundance but low viral pathogen abundance are associ-
ated with a strong bacterial host response, and samples 
with high bacterial and viral pathogen abundance show 
both host responses. Again, there are several outliers 
that are exception to these general trends. The viral host 
response for individuals with both bacterial and viral 
pathogens was lower than the viral-only group (p = 0.01), 
and the bacterial host response for individuals with both 
bacterial and viral pathogens was not significantly differ-
ent from the bacterial-only group (p = 0.82).

Construction of host‑response classifiers for predicting 
viral and bacterial infection
Lastly, we investigated whether host-response gene 
expression data alone could be used to predict the path-
ogen diagnostic results obtained from clinical testing 
(culture/qRT-PCR) as well as the re-classified groups 
(high-bacterial and high-viral) described above using 
RNA-seq. We compared several classifiers built from (1) 
cell-type enrichment scores calculated with xCell; (2) 
bacterial and viral host response scores calculated as the 
mean expression level of bacterial upDEGs (N = 548) and 
viral upDEGs (n = 273), (3) a random-forest model based 
on a reduced 10-gene bacterial signature, and 8-gene 
viral signature, and (4) a single gene biomarker, chosen 
as the top-ranked bacterial upDEG (S100A12) and viral 
upDEG (CXCL11) excluding non-protein-coding genes 
and pseudogenes. For the random forest model, repeated 
cross-validation was performed to estimate model accu-
racy (see Methods), and feature selection identified the 
following gene signatures: viral—AMER1, MRAS, IFI27, 
PSME2, LAT, SLC38A5, MX1, BAK1; bacterial—VNN1, 
TNFRSF10D, SYAP1, HSPBAP1, NBPF9, FAM200B, 
GBE1, RB1CC1, FAM172A, PROK2.

As shown in Table 3, the methods showed similar per-
formance in predicting samples with bacterial and viral 
infections based on their ROC curves. Average AUCs for 
methods 1–4 were 0.78, 0.79, 0.81, and 0.76. The random 
forest classifier performed particularly well (AUC = 0.90) 
in predicting samples with high viral pathogen abundance 

calculated from RNA-seq, and lower (AUC = 0.75) in pre-
dicting virus-positive samples from qRT-PCR testing. 
However, this is in part due to the increased diversity 
of viral pathogens captured by the RNA-seq approach, 
which therefore showed a stronger correlation with host 
response.

Ultimately, these analyses suggest that host-response 
information alone may have diagnostic value in differ-
entiating between viral and bacterial sinus infections, 
especially when the relative abundance (pathogen load) is 
high.

Discussion
In this study, we performed metatranscriptomic analysis 
of 221 NP samples from children with clinically diag-
nosed acute sinusitis. Prior to this work, there has been 
a lack of research evaluating the use and applications 
of RNA-seq profiling in this clinical context. Our study 
provides several research contributions. First, it high-
lights the ability of RNA sequencing of clinical samples 
to accurately identify bacterial and viral pathogens asso-
ciated with sinusitis infections and URTIs. Second, it 
provides an original dataset to assist with the develop-
ment of future bioinformatic approaches for infectious 
disease profiling, including hundreds of reconstructed 
viral pathogen genomes contributing to ongoing patho-
gen genomic surveillance efforts. Third, it describes host-
response signatures associated with bacterial and viral 
infections in sinusitis, which could serve as the basis for 
the development of biomarker assays to be used in future 
clinical workflows that optimize delivery of care.

Using RNA-seq we achieved an overall sensitivity of 
87% and specificity of 81% in reproducing the clinical 
results for detection of three bacterial pathogens that 
are mostly commonly implicated in sinusitis [4]. RNA-
seq also demonstrated a significant ability to detect 
viral pathogens that were also detected by the qRT-PCR 
panel (average sens/spec of 86%/92%), as well as predict 
viral load (Ct value). These accuracies are comparable to 
results obtained by previous studies using NGS for path-
ogen detection in NP samples [15, 32, 43].

Table 3  Performance (AUC) of RNA-seq host-response classifiers for predicting AS-associated bacterial and viral infections

Clinical diagnostic (culture/qRT-PCR) RNA-seq quantification

Method Bacterial +  Viral +  High bacterial High viral

1. Cell type enrichment scores 0.76 0.75 0.76 0.84

2. Average expression of DEGs 0.77 0.80 0.78 0.80

3. Random forest classifier (10-gene bacterial signature, 8-gene viral 
signature)

0.81 0.75 0.79 0.90

4. Single gene classifier (bacterial—S100A12; viral—CXCL10) 0.70 0.72 0.78 0.85
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For clinical decision making regarding antibiotic treat-
ment, a key goal of sequencing-based approaches is to 
not only detect the pathogen of interest but also its anti-
microbial genes, which can be especially challenging in 
mixed metagenomic samples. As proof of principle, we 
focused on beta-lactamase resistance in HFLU isolates, 
which represents a key clinical issue [56, 57]. As done 
previously for pediatric nose and ear samples [58], we 
used CARD [36] to identify beta-lactamases in RNA-seq 
data. This RNA-seq workflow was able to correctly detect 
beta-lactamase genes in 67% of the resistant HFLU iso-
lates, with a specificity of 96%. Additionally, beta-lactam 
resistance SNPs in the Haemophilus influenzae PBP3 
gene were also detected in several samples, which may 
represent an additional resistance mechanism that was 
detected by RNA-seq profiling but not covered by clinical 
AMR testing.

Finally, using a mapping-based consensus approach, we 
were able to reconstruct genomes of 196 viral pathogens 
with varying degrees of completeness. Reconstructed 
genomes confirmed read-based predictions and pro-
vided additional phylogenetic information. For exam-
ple, phylogenetic analyses of some of these viruses (e.g., 
HCoV-OC43, RSV B, enterovirus D68) revealed their 
evolutionary relationships to related strains in the data-
base, providing insights into their origins.

An advantage of metatranscriptomic RNA-seq over 
culture or qRT-PCR is the ability to perform a broad and 
untargeted analysis to detect any species whose genome 
is available in the reference database, which theoretically 
improves sensitivity of pathogen detection and discovery. 
Out of 221 pediatric sinusitis patients tested, 19 did not 
have any bacterial or viral pathogen detected by culture-
based or qRT-PCR testing. RNA-seq identified plausible 
pathogens for acute sinusitis in 11 of these 19 samples 
including cases of influenza B and PIV1 that were missed 
by qRT-PCR. Not surprisingly, several new pathogenic 
bacteria and viruses were also detected in these samples 
and were verified by genome reconstruction and phylo-
genetics. These included two coronaviruses (NL63 and 
229E), as well as the bacterium, Chlamydia pneumoniae. 
Other identified organisms included commensal organ-
isms of the nasal microbiome and opportunistic patho-
gens that may or may not play a direct role in sinusitis 
(e.g., different species of Moraxella and Corynebacte-
rium). Clarifying the role of these and other species in 
sinusitis etiology is a challenging goal for future work.

Using metatranscriptomics, we also examined tran-
scriptional activity within three key bacterial pathogens: 
Haemophilus influenzae (HFLU), Streptococcus pneumo-
niae (SPN), and Moraxella catarrhalis (MCAT). Differ-
ential gene expression analysis revealed highly expressed 
virulence-associated genes, including ompA and hfq in 

HFLU, ply and psaA in SPN, and ompR in MCAT. These 
findings provide insight into pathogen-specific activity 
during sinusitis and underscore the utility of RNA-seq 
for functional microbiology in clinical settings. Nota-
bly, ribosomal genes were significantly enriched among 
highly expressed genes across all three species, reflecting 
their heightened metabolic activity during infection.

One of the most exciting aspects of this study is the 
identified host-response gene expression patterns associ-
ated with bacterial and viral sinusitis infectious. Since the 
pathogen composition of our patient cohort was complex 
including a large number of samples containing both bac-
terial and viral pathogens based on culture/qRT-PCR, we 
chose to simplify the initial comparison between virus-
positive only samples versus bacteria-positive only sam-
ples. This enabled the detection of virus associated and 
bacteria associated host DEGs (“viral host response” and 
“bacterial host response”) that formed the basis of sub-
sequent analyses. Remarkably, the magnitude of these 
host responses correlated significantly with the total 
abundance of bacterial or viral pathogens detected in the 
samples. Further cell type enrichment analysis revealed 
that these patterns were likely driven by changes in the 
abundance of key cell types such as M1 macrophages 
which associated with viral infections, and neutrophils 
which associated with bacterial infections. Importantly, 
this correlation between pathogen abundance and host-
response magnitude was only identified for a limited 
subset of bacterial species (those previously identified as 
sinusitis pathogens, MCAT, SPN, HFLU) and respiratory 
viruses, and the correlation was absent when examining 
other species detected in the data that may reflect com-
mensal organisms. This finding indicates that the relative 
abundance of specific bacterial and viral species within 
the nasopharynx is a determinant of the strength of the 
host immune response. This is consistent with immunol-
ogy since the expression of host antiviral and antibacte-
rial pathways are dependent on the levels of viral (e.g., 
dsRNA) and bacterial pathogen-associated molecular 
patterns (e.g., lipopolysaccharide) sensed by the host 
immune system. Previous studies have also reported a 
correlation between antiviral host responses in RNA-
seq and viral load [59–61]. However, our study is unique 
by analyzing the interplay between a complex mixture 
of bacterial and viral pathogens and their impact on the 
host transcriptomic response.

Although traditional methods (culture and qRT-
PCR) provided a simple classification of our samples 
based on detected presence/absence of a pre-defined 
set of pathogens, metatranscriptomic data enabled a 
more holistic classification based on pathogen abun-
dance and host-response information (Fig.  8). Similar 
approaches have been used by previous studies such as 
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Wesolowska-Andersen et  al. [15] which stratified sam-
ples into “Virus-High” and “Virus-Low” groups based 
on viral read counts. When taking both pathogen abun-
dance and host-response information into consideration, 
the samples could be similarly subdivided into four main 
groups: those with a “low” abundance of bacterial or viral 
pathogens which tend to lack a host-response, and those 
with a “high” abundance of bacterial pathogens, respira-
tory viruses, or both, which tend to show the expected 
host responses. Interestingly, the observed correlation 
between pathogen abundance and host-response is not 
perfect; there are several outlier samples which exhibited 
a strong host-response pattern and yet lack a detected 
pathogen, and other samples which contained a high 
pathogen abundance but lack a detectable host response. 
For the former category, it is possible that those sam-
ples contained other pathogens that were not included 
in our pathogen panel, which may include opportunistic 
infections by commensal organisms for example. For the 
latter category, these cases could indicate delayed host-
responses in patients at the time of sampling, shedding 
of viral RNA at a post-infection time point which may 
be associated with a reduced host response, or simply an 
imperfect correlation between host responses and patho-
gen abundance. Nevertheless, future research focusing 
on host responses of patients with infectious disease and 
factors that account for discrepancies between detected 
pathogen abundance could clarify mechanistic under-
standing of disease etiology.

Finally, we compared a variety of methods to classify 
infection types and predict pathogen abundance using 
host-response information alone. By leveraging four dis-
tinct methods—including random-forest modeling, host-
response gene signatures, cell-type enrichment via xCell, 
and pathogen-specific upregulated DEGs—we achieved 
moderate classification accuracy but with room for future 
improvement. Overall, a Random-forest classifier trained 
on bacterial and viral gene signatures demonstrated high 
predictive performance, particularly for samples with ele-
vated viral loads (AUC = 0.90).

There are several limitations of our study that could 
account for variation in the results obtained. First, 
the classification into viral and bacterial infection was 
inferred based on the presence/absence of bacterial 
and viral pathogens in the nasopharynx. Although the 
mucosa of the nasopharynx and the sinuses are con-
nected, pathogens in the nasopharynx and the sinus 
cavities could differ in important ways. Moreover, some 
of these organisms may be present as commensals and 
their presence alone does not necessitate an infection 
[62–65]. However, as mentioned in the background sec-
tion, detection of bacterial pathogens in the nose appears 

to be a useful marker associated with likelihood of benefit 
from antibiotic treatment, regardless of whether these 
pathogens are truly present in the sinuses or causing 
an infection [6]. Second, the enrollment criteria for this 
study recruited patients experiencing symptoms for at 
least 6 days when sampled. Since peak shedding of some 
viruses can occur within 48 h of symptom onset, the cho-
sen sampling time may have led to a reduced sensitivity 
of viral detection as well as lower coverage for genomes 
reconstructed. Variation in the timing of bacterial infec-
tions could also impact sensitivity of bacterial detection 
by RNA-seq. Third, our sensitivity for pathogen detection 
by RNA-seq is dependent on the depth of sequencing. 
Deeper sequencing may have been necessary to detect 
viruses, for example, that were false negatives by RNA-
seq but were detected using qRT-PCR. DNA viruses 
in particular (e.g., adenoviruses) may have been more 
prone to weak detection due to the use of RNA-seq over 
DNA-seq. Fourth, in this manuscript, we describe asso-
ciations between baseline meta-transcriptomics at other 
baseline variables; the potential of meta-transcriptomics 
to determine prognosis was not explored. Future stud-
ies that employ both metatranscriptomic and metagen-
omic sequencing with repeated time-series sampling of 
patients may overcome some of the limitations described 
above. Nevertheless, the current study provides a start-
ing framework for exploring the use of high-throughput 
sequencing of patient samples to uncover etiology and 
host-response in pediatric sinusitis and other upper res-
piratory infections.

Conclusions
In summary, this study applied metatranscriptomic 
RNA-seq to analyze 221 NP samples from children 
with clinically diagnosed acute sinusitis. Not only was 
metatranscriptomics highly accurate in its ability to 
detect known bacterial pathogens associated with acute 
sinusitis and a diverse set of clinically relevant viruses 
based on comparison with culture or qRT-PCR, but 
untargeted analysis revealed additional pathogens that 
are plausible causes of infection and may warrant further 
attention in future studies. Furthermore, the analysis of 
host gene expression revealed distinct host responses 
that differentiated bacterial from viral infections, and the 
magnitude of these host responses showed a significant 
correlation with pathogen load. Ultimately, these results 
reveal the potential of metatranscriptomics for dual 
analysis of pathogen and host-response in pediatric acute 
sinusitis and upper respiratory infections in general. The 
identified molecular signatures of bacterial and viral 
infections create new avenues for development of future 
diagnostic approaches.
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