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MuCST: restoring and integrating 
heterogeneous morphology images and spatial 
transcriptomics data with contrastive learning
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Abstract 

Spatially resolved transcriptomics (SRT) simultaneously measure spatial location, histology images, and transcrip-
tional profiles of cells or regions in undissociated tissues. Integrative analysis of multi-modal SRT data holds immense 
potential for understanding biological mechanisms. Here, we present a flexible multi-modal contrastive learning 
for the integration of SRT data (MuCST), which joins denoising, heterogeneity elimination, and compatible feature 
learning. MuCST accurately identifies spatial domains and is applicable to diverse datasets platforms. Overall, MuCST 
provides an alternative for integrative analysis of multi-modal SRT data (https://​github.​com/​xkmax​idian/​MuCST).
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Background
Cells are the fundamental units of tissues in multicel-
lular organisms, which are physically clustered together 
with various states. Recognizing the structure and spatial 
location of cells is vital for understanding the emergent 
properties and pathology of tissues [1]. The traditional 
microscopy technology identifies and characterizes cell 
groups (also called cell types or sub-populations) through 
similarities of morphology, including shapes, sizes and 

physical appearance of cells [2]. However, morphology 
alone is insufficient to fully characterize structure of cells 
because of the unstable states of cells [3]. Fortunately, 
the single-cell RNA sequencing (scRNA-seq) technology 
enables generation of whole genome-wide expression at 
cell level, providing complementary information to char-
acterize structure of cells at molecular level [4, 5].

However, the dissociation step of scRNA-seq erases 
spatial context of cells from their original tissues that is 
crucial for understanding cellular functions and organi-
zations [6]. Spatial Transcriptomics (ST) [7] simultane-
ously allows morphological and transcriptional profiling 
of cells in the same tissue regions, which also retains spa-
tial context of cells [8]. Typically, current ST technologies 
can be broadly divided into two categories, i.e., imaging- 
and next-generation sequencing (NGS)-based methods, 
where the former one uses probes to localize mRNA 
transcripts, including FISH and MERFISH [9], seqFISH 
[10], and STARmap [11], which are criticized for their 
limited capacity to detect RNA transcripts. To overcome 
this limitation, the latter one utilizes spatial bar-code 
and next-generation sequencing technologies to retain 
transcription and spatial information, including Legacy 
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Spatial Transcriptomics [12], 10× Visium [13], Slide-
seq [14], and Stereo-seq [15]. The accumulated spatially 
resolved transcriptomics (SRT) data provide an opportu-
nity to investigate functions and cellular structure of tis-
sues by exploiting interesting patterns and features that 
cannot be discerned from scRNA-seq data [16].

Therefore, integrative analysis of spatially resolved 
data is a prominent task since it sheds light on revealing 
mechanisms of tissues. On the basis of principles of algo-
rithms, current approaches are roughly divided into two 
categories, i.e., transcript- and image-based methods, 
where the former ones are devoted to integrate transcrip-
tomics and spatial information, and the latter ones fuse 
morphology, transcript, and spatial information. Specifi-
cally, transcript-based approaches concentrate on learn-
ing cell features by balancing transcriptomics and spatial 
coordinates of cells with various strategies. For example, 
algorithms for scRNA-seq data, such as SCANPY [17], 
DRjCC [18], and jSRC [19] are directly applied to ST data 
by ignoring spatial information of cells, resulting in the 
undesirable performance. To overcome this limitation, 
many algorithms are developed by incorporating spatial 
coordinates into feature learning with various manners. 
For instance, Gitto [20] employs the hidden Markov ran-
dom field model, whereas BayesSpace [21] adopts the 
Bayesian statistical method. STAGATE [22], GraphST 
[23], and Spatial-MGCN [24] utilize graph neural net-
works to learn features of cells, while SEDR [25], DRSC 
[26], and SpatialPCA [27] adopt subspace learning. con-
structs neighbor graphs with transcriptional feature and 
spatial information, and employs graph neural network to 
learn features of cells. And, SpiceMix [28] and CellChar-
ter [29] fuse multiple adjacent slices of tissues to jointly 
model and characterize structure of spatial domains.

Nevertheless, these algorithms ignore morphological 
information in histological images that usually provide 
vital supplementary information for transcriptomics. 
For example, transcriptional variations within distinct 
spatial domains are often mirrored in morphology 
[30]. However, integrating morphology and SRT data is 
highly non-trivial because of the extra-ordinary hetero-
geneity of multi-modal data. Current algorithms lever-
age morphological information to complement spatial 

transcriptomics with different strategies. For example, 
stLearn [31] calculates morphological distance between 
cells to smooth and augment expression of cells. SpaGCN 
[30] and DeepST [32] integrate spatial and morphologi-
cal information into cell networks, and then learn fea-
tures with graph convolution network (GCN). stMVC 
[33] and stMGATF [34] transform spatial domain iden-
tification in SRT data into the multi-view clustering, and 
then adopt the semi-supervised strategy for down-stream 
analysis. MUSE [35] integrates information of morphol-
ogy and transcription to learn joint representation with 
deep learning, while ConGI [36] and conST [37] perform 
integrative analysis with contrastive learning.

Even though few attempts are devoted to the integra-
tion of histological images and spatial transcriptom-
ics, there are still many unsolved and critical problems. 
First, the extra experimental steps required to preserve 
the locations of cells, which brings noise into spatially 
resolved data [38], posing a great challenge for design-
ing effective integrative algorithms. Current algorithms 
remove noise of SRT data by in the pre-processing pro-
cedure, which separates noise of data and feature learn-
ing, failing to fully characterize and model noise of data. 
Second, spatially resolved data are highly heterogene-
ous because of spatial and transcriptional information, 
and current approaches directly learn the low-dimen-
sional features of cells, which neglects the heterogeneity 
of spatial locations and transcriptiomics. How to avoid 
heterogeneity of SRT data is still a great challenge for 
integrative analysis. Third, spatially resolved data con-
sist of multiple modalities that are complementary to 
each other, and current algorithms fail to deeply fuse all 
modalities, thereby reducing the quality of cell features. 
How to learn compatible and discriminative features of 
cells is also vital for the integration of morphology and 
SRT data.

To address the aforementioned issues, we present a 
novel and flexible Multi-modal Contrastive learning 
for the integration of Spatially resolved Transcriptom-
ics (MuCST), including morphology, spatial coordinates 
and transcription profiles of cells. As shown in Fig.  1, 
MuCST consists of two major components, i.e., multi-
modal feature learning, and consistent feature learning 

(See figure on next page.)
Fig. 1  Overview of MuCST for integrating spatially resolved data with histology images, spatial coordinates and transcriptional information. A 
Spatially resolved multi-modal data include histology images, spatial coordinates of cells, and transcriptional profiles of cells. B MuCST learns 
the morphological feature of cells from histology images with available SimCLR [39], and learns the transcriptional features of cells by integrating 
spatial and transcriptional information, where an attributed cell network model is proposed. Graph convolution network (GCN) is employed 
to learn compatible transcriptional features with constrastive learning. C MuCST reconstructs histology images and expression profiles of cells 
with consistent cell features that are obtained with multi-modal contrast learning by fusing the morphological and transcriptional features of cells. 
D Down-stream analysis of fused cell features from the reconstructed image and expression profiles with principle component analysis (PCA) 
include spatial domain identification, tumor micro-environment, spatial transcriptomics data denoising, and so on
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Fig. 1  (See legend on previous page.)



Page 4 of 22Wang et al. Genome Medicine           (2025) 17:21 

and data restoration, where the former procedure 
independently obtains features of cells from morphol-
ogy and ST data, the morphological features of cell are 
learned with pre-trained image process techniques, and 
transcriptional features of cells are obtained with GNN. 
The latter procedure removes heterogeneity of morpho-
logical and transcriptional features of cells by learning 
consistent features of cells with multi-modal contras-
tive learning, where noise of SRT data is also removed 
with data restoration, thereby enhancing discrimina-
tive and compatibility of consistent features of cells. 
The experimental results on the simulated and SRT data 
demonstrate that MuCST not only precisely removes 
heterogeneity of morphology and SRT data, but also 
improves the dissection and interpretation of spatial 
patterns.

Methods
Data pre‑processing and network construction
Eleven simulated and thirteen biological datasets (Addi-
tional file 1: Table S1) are employed to fully validate per-
formance of MuCST. For all these datasets, spots (cells) 
outside of the main tissue regions are removed. Histol-
ogy images are split into patches for each spot accord-
ing to spatial coordinates, and morphological features of 
patches are learned with ResNet-50 [40] (denoted by mi ). 
K-nearest neighborhood (KNN) is utilized to construct 
the cell network G = (V ,E) with euclidean distance of 
spatial coordinates of cells (k = 6 according to Ref. [41]). 
Then, weights on edges are calculated with similarity 
of morphological features of corresponding cells, i.e., 
weight aij for the ith and jth cell is the cosine similar-
ity of mi and mj . The adjacent matrix of G is denoted by 
A = (aij)n×n with element aij as the weight on edge (i, j), 
where n is the number of cells. The raw expression profile 
of n cells X = [x1, . . . , xn] is normalized, log-transformed 
and scaled according to library size with SCANPY [17]. 
By following Seurat [42], genes expressed in less than 10 
cells are filtered. To overcome the low expression pro-
file of cells, each cell is augmented with its neighbors. In 
details, given expression profile of the ith cell x̃i , and its 
neighbors in G ( Ni(G) = {j|(i, j) ∈ E} ), the augmentation 
is performed by integrating morphological and expres-
sion of neighbors as

The attributed cell network G = (G,X) is constructed 
by setting G as topological structure of cells, and the aug-
mented expression profile of cells X as attributes of ver-
tices. The random attributed network Ĝ = (G, X̂) of G is 

(1)xi = x̃i +

∑
j∈Ni(G) x̃iaij

|Ni(G)|
.

generated by preserving the topological structure G and 
randomly permutating attributes of cells.

Mathematical model for MuCST
As shown in Fig.  1, MuCST consists of two major pro-
cedures, i.e., multi-modal feature learning, and consistent 
feature learning and data restoration, where the former 
one procedure aims to obtain morphological and tran-
scriptional features of cells, and the latter one focuses on 
learning consistent features of spots by fusing transcrip-
tional and morphological features produced by the for-
mer procedure, and reconstructing the original data with 
the learned consistent features of spots.

On the multi-modal feature learning issue, MuCST 
first learns morphological feature of cells by splitting his-
tology image I into patches for each spot, where these 
patches are randomly noised with the pre-trained ResNet 
[40], followed by multilayer perception (MLP) [43] (how 
to segment histology images is presented in Additional 
file 1: Section 1.1). To enhance quality of morphological 
features, SimCLR [39] is employed to discriminate the 
original and noised patches Then, MuCST employs graph 
neural network (GNN) to learn transcriptional features 
of cells by manipulating structure of attributed cell net-
work G . Specifically, MuCST utilizes graph convolution 
network (GCN) ( ι layers) [44] to learn cell transcriptional 
with structure as

where Ã = D− 1
2AD− 1

2 is the normalized adjacent matrix 
of G (D is diagonal matrix with element as dii =

∑
j=1 aij ), 

O and B denote the trainable weight and bias matrix 
respectively, σ(·) is a non-linear activation function, Z(l) 
is the latent transcriptional feature at the lth layer, and zi 
is the ith row of Z, i.e., low-dimensional representation 
of the ith spot (how to select the number and dimensions 
of layers of GCN can be referred in Additional file 1: Sec-
tion  1.2). Analogously, MuCST learns the random tran-
scriptional features, denoted by Ẑ , by manipulating the 
random attributed network Ĝ .

On the consistent feature learning and data reconstruc-
tion issue, MuCST aims to learn consistent features from 
morphological and transcriptional features of spots. To 
improve discriminative of features, we expect features 
of cells belonging to the same spatial domains are close, 
whereas these from different domains apart from each 
other. Specifically, for each cell zi , MuCST enforces it to 
be close to the center of its neighbors in the attributed 
cell network G , i.e., �zi − z

[c]
i �2 . According to Ref. [45], 

the loss of contrastive learning is formulated as

(2)Z(l) =

{
X , if l = 0

σ

(
ÃZ(l−1)O(l−1) + B(l−1)

)
, if l ≥ 1,
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where φ(·) and E(X) are the bilinear function and math-
ematical expectation of X, respectively. Equation (3) 
minimizes distance between features of each spot and its 
center and maximizes distance between random features 
of each spot and its center.

To obtain consistent features of cells from the mor-
phological and transcriptional features, we employ 
a two-layer neural network ϒ to project them into a 
shared subspace to reduce the heterogeneity of multi-
modal features as

where the relations between morphology and spatial 
expression are implicitly exploited. To comprehensively 
fuse these two types of cell features, we expect the distri-
butions of morphological and transcriptional features are 
consistent. Specifically, MuCST enforces the morpholog-
ical features h[m]

i  is close to the average of transcriptional 
features of its neighbors (denoted by h[ce]i  ), where can be 
fulfilled with contrastive learning [46] as

After obtaining consistent features of cells, MuCST 
also expects them to preserve structure of morphol-
ogy and transcriptional profiles. To reach a tradeoff 
between consistence and specificity, we adopt the resto-
ration strategy to ensure the learned consistent features 
of spots can also reconstruct the original morphology 
and transcriptional profiles. In details, we employs 
GCN to reconstruct expression profile of cells by using 
the H [e] with structure as

where H (t) denotes the reconstructed expression profiles 
at the t-th layer of GCN. Therefore, the loss function for 
expression reconstruction is defined as

where parameter τ is the number of layers for decoder. 
Then, histology image is reconstructed I∗ = H [m](H [m])

′ , 

(3)

L
[g] = −

1

2n

(
n∑

i=1

(
EZ,W

[
logφ

(
Z,Z[c]

)]
+ E

Ẑ,W

[
log

(
1− φ

(
Ẑ,Z[c]

))]))

(4)
{
h
[m]
i = ϒ(mi),

h
[e]
i = ϒ(zi).

(5)

L[c] = −
1

n

n∑

i=1

log

exp

(∥∥∥h[ce]i − h
[m]
i

∥∥∥
2
)

∑n
j=1 exp

(∥∥∥h[ce]i − h
[m]
j

∥∥∥
2
)) .

(6)H (t) =

{
H [e], if t = 0

σ

(
ÃH (t−1)O(t−1) + B(t−1)

)
, if t ≥ 1,

(7)L[e] =

∥∥∥X −H (τ )
∥∥∥
2

,

where (H [m])
′ is the transpose of H [m] . MuCST mini-

mizes the approximation, i.e.,

By combining Eqs. (3), (5), (8), and (7), the overall 
objective function of MuCST is formulated as

where parameter �1 , �2 , and �3 control the relative impor-
tance of morphological information reconstruction, tran-
scriptional feature consistence, and multi-modal fusion, 
respectively. And, in case when the histology image is 
absent, we set �1 = �3 = 0, e.t. the objective function of 
MuCST is reformulated as

The optimization, parameter selection, and termination 
of MuCST are presented (Additional file  1: Section  1.3, 
1.4 and 1.5).

After learning consistent features and restoring data, 
MuCST obtains morphological and transcriptional fea-
ture of cells, denoted by f [e]i  and f [m]

i  , with PCA (principle 
component analysis) from the reconstructed data, and 
then combine them via a linear function as

where parameter �1 controls importance of morphologi-
cal features of cells. Feature F = [f1, . . . , fn] is utilized for 
the downstream analysis. For example, MuCST identi-
fies spatial domains by manipulating F with Mclust [47] 
if the number of domains is known, PhenoGraph [48] 
otherwise.

Identification and functional analysis of differentially 
expressed genes
MuCST performs differential expression analysis of genes 
for each spatial domain by using Wilcoxon rank-sum test 
implemented in SCANPY package [17]. Genes expressed 
in more than 80% of cells/spots in each domain, with a 
fold change ≥ 1 and an adjusted FDR ≤ 0.05, are selected 
as differentially expressed genes (DEGs). The filtered 
DEGs serve as input for gene ontology enrichment 
analysis, which is conducted with clusterProfiler [49]. 
Enriched functional terms with −log10(adjusted P-value) 
are plotted.

Clustering criteria
When manual annotation of spatial domains is absent, two 
extensively adopted clustering criteria, Silhouette Coef-
ficient (SC) and Davies-Bouldin (DB) scores, are selected 

(8)L[m] =
∥∥I − I∗

∥∥2.

(9)L = L[e] + �1L
[m] + �2L

[g] + �3L
[c]
,

(10)L = L[e] + �2L
[g]
.

(11)fi = f
[e]
i + �1f

[m]
i
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to validate the performance of clustering in terms of com-
putation. Specifically, SC takes into account compactness 
within and separation across clusters as (b− a)/max(a, b) , 
where a is the mean intra-cluster distance, and b is the 
mean nearest-cluster distance. It ranges between − 1 and 
1, where a higher score refers to more coherent clusters. 
SC = 0 means that the sample is on or close to the bound-
ary of neighboring clusters, whereas negative values 
denote potentially wrong clusters. DB score is the average 
ratio of within-cluster distances to between-cluster dis-
tances, favoring farther apart and less dispersed clusters 
with low values.

Overlap ratio
If the ground truth spatial domains are unknown, we 
employ ratio of overlap between spatial domains iden-
tified by various algorithms and bio-marker genes as a 
metric to evaluate performance of algorithms. Specifi-
cally, we use the minimum expression value of the identi-
fied differential genes within the identified spatial domain 
as a threshold, then calculate the Rgene for all spots with 
expression values exceeding this threshold and measure 
its overlap ratio with the Rspatial of the identified spatial 
domain. The overlap ratio is formulated as

Benchmarking
To comprehensively evaluate performance of MuCST, we 
conduct extensive experiments to demonstrate its supe-
riority over existing state-of-the-art methods, including 
the non-spatial method SCANPY [17] and spatial meth-
ods Giotto [20], stLearn [31], SEDR [25], BayesSpace [21], 
SpaGCN [30], STAGATE [22], SpatialPCA [27], DeepST 
[32], Spatial-MGCN [24], MUSE [35], ConGI [36], conST 
[37], stMVC [33], and stMGATF [34]. All these algo-
rithms are executed to achieve the best performance for a 
fair comparison. When the ground truth spatial domains 
are known, performance of algorithms is measured with 
adjusted rank index (ARI) [50] as

where n is the number of cells, nij is the number of cells 
of class label C∗ ∈ P∗ assigned to cluster Ci in partition 
P, and ni / nj is the number of cells in cluster Ci / Cj of 

(12)OR(Rgene,Rspatial) =
|Rgene ∩ Rspatial |

|Rgene ∪ Rspatial |
.

(13)

ARI(P∗
,P) =

�
ij


 nij

2


−


�

i


 ni

2


+

�
j


 nj

2




/


 n

2




1

2


�

i


 ni

2


+

�
j


 nj

2




−


�

i


 ni

2


+

�
j


 nj

2




/


 n

2




,

partition P. Additional measurements, such as normal-
ized mutual information [51], and F1-score are also 
adopted.

Data cohorts
Human dorsolateral prefrontal cortex dataset
The human dorsolateral prefrontal cortex (DLPFC) data-
set [52] was sequenced using 10× Visium, which includes 
12 slices with each containing 3460∼4789 spots and 33,538 
genes. Spots of each slice of DLPFC were manually anno-
tated into seven different layers based on marker genes, 
i.e., from Layer 1 to Layer 6, and white matter (WM).

Mouse brain datasets
Several mouse brain datasets sequenced by using differ-
ent technologies are included in this study. Specifically, the 
normal mouse brain posterior slice, normal mouse brain 
coronal slices, and transgenic mouse (TgCRND8) brain 
slice were sequenced using the 10× Visium and are publicly 
available in the 10× Genomics Data Repository (https://​
www.​10xge​nomics.​com/​resou​rces/​datas​ets) [53]. The nor-
mal posterior slice contains 3353 spots and 31,053 genes, 
the normal coronal slice contains 2702 spots and 32,285 
genes, and the TgCRND8 slice includes 3063 spots and 
19,465 genes, respectively. Furthermore, to evaluate perfor-
mance of MuCST on imaging-based ST platform, we also 
include the mouse brain cortex dataset sequenced by using 
osmFISH [54], which contains 5328 cells and 33 genes.

Human intestine dataset
The human intestine dataset [55] were collected from the 
colon of a male patient aged 66 years sequenced by using 
10× Visium. Slice labeled as “A1” in the original publica-
tion is involved in this study, which contains 2807 spots 
and 33,538 genes.

Human cancer datasets
To benchmark MuCST on cancer-related datasets, we 
employ several human cancer related datasets. The 
human breast cancer slice [56] and human invasive 
ductal carcinoma slice were sequenced using 10× Visium 
[53], where the breast cancer slice contains 3798 spots 
and 36,601 genes, and invasive ductal carcinoma con-
tains 4727 spots and 36,601 genes. The human pancre-
atic ductal adenocarcinoma (PDAC) slice [57], human 
prostate cancer slice [58], and human HER2 breast tumor 
slice [59] were sequenced using Legacy ST [12], where 
the PDAC slice contains 428 spots and 19,738 genes, the 
prostate cancer slice contains 501 spots and 17,335 genes, 
the HER2 breast tumor slice contains 603 spots and 
14,907 genes.

https://www.10xgenomics.com/resources/datasets
https://www.10xgenomics.com/resources/datasets
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Mouse visual cortex dataset
The mouse visual cortex dataset [11] sequenced by using 
STARmap is also selected, which contains 817 cells and 
1020 genes. By following stMVC [33], we employ Clus-
terMap [60] to annotate cells into seven distinct lay-
ers from the raw fluorescence data based on watershed 
segmentation.

Mouse olfactory bulb and hippocampus datasets
To evaluate performance of MuCST on high-resolution 
spatial transcriptomics data, we additionally include the 
mouse olfactory bulb dataset [61] sequenced using Ste-
reo-seq, which contains 19,109 spots and 14,376 genes. 
And, the mouse hippocampus dataset [14] sequenced 
using Slide-seq V2 is also selected, which contains 41,786 
spots and 23,264 genes.

Results
Overview of MuCST
To facilitate the understanding of this study, the rationale 
and procedures of MuCST are briefly presented in this 
section (technical details can be referred to section of 
methods). For clarity, we utilize “cell” to denote the basic 
measurement units for imaging-based ST technologies, 
and “spot” to denote the basic measurement units for 
barcode-based ST technologies.

Spatially resolved transcriptomics data comprehen-
sively cover histology images, spatial coordinates and 
transcription of spots (Fig. 1A), posing a great challenge 
for integrative analysis of them because of extra-ordinary 
heterogeneity of multi-modal data. Available algorithms 
directly fuse various types of features of spots, failing to 
appropriately address heterogeneity and intrinsic struc-
ture of data, resulting in the undesirable performance. 
To address these issues, we propose a novel and flexible 
algorithm for the integration of histological images and 
spatial transcriptomics with contrastive learning, which 
consists of three components, i.e., multi-modal feature 
learning, consistent feature learning and data restora-
tion, and downstream analysis (Fig.  1). The underlying 
assumption is that spatial resolved data characterize tis-
sues from different perspectives and levels, and inte-
grative analysis of these data with a refined ordering 
according to their roles is promising for analyzing het-
erogeneous multi-modal data. Specifically, spatial and 
expression profiles of spots characterize tissues from 
micro-level, whereas histological images depict tissues 
from macro-level. Thus, MuCST integrates micro- and 
macro-level information to characterize and model 
intrinsic structure of patterns.

On the multi-modal feature learning issue, MuCST inde-
pendently learns the morphological and transcriptional 

features with different strategies (Fig.  1B). Specifically, 
MuCST splits the morphological image I into patches 
for each spot. And, the pre-trained deep neural network 
model ResNet [40], followed by multi-layer perception 
(MLP) [43], is adopted to learn the morphological features 
of spots. To enhance quality of morphological features of 
spots, SimCLR [39] is employed to discriminate the origi-
nal and noised patches (Fig. 1B). And, MuCST learns the 
transcriptional features of spots with graph convolution 
network (GCN), where the indirect topological structure 
is exploited to fully characterize spatial and transcriptional 
information. Specifically, MuCST first constructs an attrib-
uted network by integrating histological images, spatial 
coordinates and expression profiles X of spots (“Methods” 
section). Then, MuCST learns the transcriptional features 
of spots by discriminating the attributed network and ran-
dom one generated with permutation of gene expression 
profiles, where neighbors of spots are also in close proxim-
ity to each other in the transcriptional feature space.

On the consistent feature learning and data recon-
struction issue, MuCST considers the morphological 
and transcriptional features of spots as complementary 
modalities, which fuses these heterogeneous features of 
spots with multi-modal contrast learning (Fig.  1C). In 
detail, the morphological and transcriptional features 
of spots are projected into a shared subspace, where 
MuCST aligns the distributions of two types of features 
such that they are subjected to the identical distribution. 
In this case, the heterogeneity of multi-modal features is 
removed at the feature level, facilitating the down-stream 
analysis. Then, MuCST restores histology image I∗ and 
transcriptional profiles of spots X∗ by minimizing the 
reconstruction errors, i.e., �I − I∗� and �X − X∗� , thereby 
preserving capability of consistent features to represent 
the original morphology and transcriptomics, balancing 
consistence and specificity of features of spots. Finally, 
MuCST employs principle component analysis (PCA) 
to independently learn the transcriptional and morpho-
logical features of spots from the reconstructed data for 
down-stream analysis. In experiments, MuCST facilitates 
the critical applications of spatially resolved data, includ-
ing spatial domain identification, tumor micro-environ-
ment, and denoising spatial transcriptomics (Fig. 1D).

In all, MuCST is a flexible network-based model for 
integrating spatially resolved data, which jointly learns 
the compatible features of spots with multi-modality 
contrast learning. It attempts to address heterogeneity 
of spatial omic data with network models, where hetero-
geneity of data is modeled and removed at feature level. 
Furthermore, MuCST not only facilitates users for down-
stream analysis, but also serves as the pre-processing step 
for spatially resolved data, such as denoising and restor-
ing SRT data.
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Benchmarking MuCST with simulated spatially resolved 
data
To evaluate performance of MuCST, we first utilize simu-
lated spatially resolved data, including the morphological 
information, spatial coordinate and transcription profiles 
of cells, where is originated from as MUSE [35] (genera-
tion and visualization of simulated datasets are shown in 
Additional file  1: Section  1.6 and Additional file  1: Fig. 
S1A, respectively). The typical algorithms, such as CCA 
(with PCA for features) [62], AE (auto-encoder) [63], 
MUSE [35], as well as the concatenation of various fea-
tures (also called feature concat.), and other multi-modal 
integrative algorithms such as conST [37], ConGI [36], 
stMVC [33], and stMGATF [34], are selected as baselines, 
where SpiceMix [28] and CellCharter [29] are excluded 
since they are designed for integrating multiple slices. 
In details, CCA and ConGI learn features by maximiz-
ing cross-modality correlation, and AE integrates multi-
modal data by reconstructing the original data. conST 
directly concatenates heterogeneity multi-modal features 
as attributes of cell network, and stMVC and stMGATF 
employ semi-supervised strategy for integrative analysis 
of multi-modal data. We select the Adjusted Rand Index 
(ARI) [50], NMI and F1-score to measure performance of 
various algorithms for identifying domains in the simu-
lated dataset.

We first validate capacity of algorithms to learn dis-
criminative features from each modality, where the num-
ber of domains in the full multi-modal space is fixed by 
randomly merging different clusters for each modality. 
As the number of clusters decreases, CCA and feature 
concatenation-based algorithms are similar to the sin-
gle-modality approaches, whereas MUSE and MuCST 
are significantly superior to others, demonstrating that 
these algorithms capture the discriminative features of 
multi-modal data (Fig.  2A, Additional file  1: Fig. S1B). 
Furthermore, MuCST outperforms MUSE in all these 
cases. Specifically, ARI of MuCST is 0.880 ± 0.024 (for 
15 clusters), 0.887 ± 0.020 (for 10 clusters), and 0.883 ± 
0.018 (for 6 clusters) respectively, which is 2%∼ 5% higher 
than MUSE. Visualization of features learned by various 
algorithms with t-SNE [64] demonstrates that MuCST 
learns the compatible and discriminative features of 
cells that precisely characterize and model structure of 
domains (Additional file  1: Fig. S1B). However, AE and 
conST are even worse than single-modality approaches, 
indicating that heterogeneity of modalities greatly affects 
performance of algorithms. And, ConGI neglects spatial 
information, which results in an undesired performance. 
stMVC and stMGATF achieve an excellent performance 
since they take 50% annotations as prior information, and 
performance of them also decreases with the number of 
clusters increases.

Next, we validate performance of MuCST by degrading 
quality of one modality, where two persistent strategies, 
i.e., dropouts and noise, are selected to perturb transcrip-
tion data. By varying dropout rate, average ARI of mor-
phology-alone method is ∼0.6 (Fig. 2B, center horizontal 
dashed lines). As the quality of transcript degrades (from 
right to left along with x-axis), performance of all these 
multi-modal methods drops dramatically. In all, MUSE, 
stMVC, stMGATF, and MuCST are much more robust 
than others (Fig.  2B, region between “min” and “max” 
of morphology-alone). Furthermore, MuCST is inferior 
to stMVC and stMGATF, but is superior to others for all 
the dropout rates. The reason is that stMVC and stM-
GATF make use of 50% labels as prior, whereas MuCST 
requires no prior information. These results demonstrate 
that MuCST automatically discriminates the high- and 
low-quality modality, thereby improving performance 
of algorithms. Visualization of features learned by vari-
ous algorithms demonstrates that MuCST precisely 
models structure of ten domains regardless of dropout 
rate (Fig. 2C and Additional file 1: Fig. S1C). Notice that 
CCA, conST, ConGI, and feature concatenation are dra-
matically affected by degradation of data quality because 
these algorithms solely focus on deriving relations among 
various modalities, thereby resulting in high sensitivity to 
data perturbation. Furthermore, by replacing ARI with 
NMI and F1-score, performance of MuCST is robust for 
simulated datasets by varying the number of clusters and 
dropout rates (Additional file 1: Fig. S2A and S2B).

Moreover, simulated dataset is simultaneously con-
taminated for transcript and morphology modalities by 
using additive Gaussian random noise with various vari-
ances. Performance of these algorithms drops as variance 
of noise increases, and MuCST achieves the best perfor-
mance (Additional file  1: Fig. S2C left panel). In detail, 
AE, CCA and feature concatenation are inferior to single 
modality approaches, failing to learn compatible features 
from noised heterogeneous multi-modal data, whereas 
MUSE and MuCST precisely characterize noise and 
learn discriminative features. Furthermore, performance 
gap between MuCST and MUSE dramatically enlarges 
as the variance of noise increases from 0.1 to 2, demon-
strating that MuCST is more precise and robust than 
MUSE. Three reasons explain why MuCST is superior to 
baselines. First, MuCST employs attributed cell network 
model for multi-modal data, which provides a better and 
comprehensive way to characterize intrinsic structure of 
domains. Second, MuCST makes use of contrast learn-
ing to remove heterogeneity of multi-modal data, thereby 
improving quality of features. Third, MuCST recon-
structs the original multi-modal data to preserves speci-
ficity of each modality, where features of cells reaches a 
good balance between consistence and specificity.
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To check whether strategy for clustering effect perfor-
mance of algorithms, we employ PheoGraph, Hierarchi-
cal and K-means to identify domains in simulated dataset 
with features of cells learned by various algorithms, where 
performance of these algorithms is consistent with that 
of the original ones, indicating that they are insensitive to 
the selection of clustering methods (Additional file 1: Fig. 
S2C right panel). Furthermore, MuCST achieves a good 
balance between efficiency and accuracy, where it saves 
50% running time of MUSE with even higher performance 

(Additional file  1: Fig. S2D). Parameter analysis demon-
strates that MuCST is quite stable (Additional file 1: Sec-
tion 1.4, Additional file 1: Fig. S2E and S3). And, running 
time of various algorithms on biological datasets demon-
strate MuCST achieves an balance between efficiency and 
accuracy, indicating that it is applicable to large-scale data-
sets (Additional file 1: Fig. S4, Additional file 1: Table S2 and 
Table  S3). Overall, MuCST not only captures discrimina-
tive features in multi-modal data, but also effectively avoids 
being confounded by data quality of different modalities.

Fig. 2  Performance of various algorithms on the simulated data. A ARI of identifying ground truth high-resolution subpopulations 
from lower-resolution single-modality subpopulations (k = 15, 10, or 6), where 1000 cells with transcriptional and morphological profiles 
are simulated. And, box plot is based on 10 replicates with median (center line), interquartile range (box) and data range (whiskers). B ARI 
of identifying ground truth clusters by varying the range of dropout levels from the transcriptional modality, where dashed lines denote 
minimum, average and maximum ARI of morphology modality alone, x axis represent ARI of PCA on transcript modality alone, y axis denotes ARI 
of combined-modality methods. C tSNE visualizations of latent representations from single- and combined-modality methods, where ground truth 
subpopulation is labeled with various colors in simulation
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MuCST significantly enhances performance of identifying 
spatial domains for various tissues
Spatial domains play a crucial role for investigating struc-
ture and functions of tissues [65], and we validate perfor-
mance of MuCST for identifying spatial domains by using 
the LIBD human dorsolateral prefrontal cortex (DLPFC) 
dataset [52], 10 × Visium dataset of mouse brain tissue, 
and the human intestine dataset [55]. Fifteen state-of-
the-art clustering algorithms, including SCANPY [17], 
Giotto [20], stLearn [31], SEDR [25], BayesSpace [21], 
SpaGCN [30], STAGATE [22], SpatialPCA [27], DeepST 
[32], ConGI [36], conST [37], stMVC [33], Spatial-
MGCN [24], stMGATF [34], and MUSE [35], are selected 
as baselines.

DLPFC dataset consists of 12 slices obtained from 
human brain that are manually annotated as six lay-
ers of dorsolateral prefrontal cortex (Layer1 ∼ Layer6) 
and white matter (WM) on the basis of histology image 
and gene markers (Fig. 3A). MuCST outperforms base-
lines on the identification of spatial domains in slice 
151673 with ARI 0.641, while that of the best baseline 
is 0.620 (Fig. 3A, Additional file 1: Fig. S5–S8). MUSE 
is criticized for ignoring spatial information that is 
critical factor for spatial domains. These results dem-
onstrate that MuCST captures discriminative features 
of spots. Performance of various algorithms for all 12 
slices of DLPFC in terms of ARI, NMI, and F1-score is 
presented (Fig. 3B and Additional file 1: Fig. S9) where 
MuCST outperforms baselines except for stMVC. 
In details, ARI of MuCST is 0.584 ± 0.060, whereas 
that of Spatial-MGCN is 0.498 ± 0.097, conST 0.437 
± 0.052, DeepST 0.501 ± 0.077, and BayesSpace 0.432 
± 0.104 (mean ± standard deviation, Fig.  3B). stLearn 
and SCANPY are inferior to others because these algo-
rithms either utilize one of modalities, or fail to fully 
integrate multi-modalities, which is consistent with 
assertion in simulated data. Furthermore, MuCST is 
more robust than others since its variance is much less 
than baselines, demonstrating that MuCST learns dis-
criminative features of spots for all slices (Additional 
file 1: Fig. S5–S8). The reason why stMVC outperforms 
others is that it takes 50% annotations as prior, whereas 
MuCST requires no prior information (stMVC: 0.636 ± 
0.099 vs MuCST: 0.584 ± 0.060). By replacing ARI with 
NMI and F1-score, performance of MuCST is consist-
ent with that of ARI, demonstrating MuCST is insen-
sitive to measurements (Additional file  1: Fig. S9). To 
investigate whether stMVC outperforms MuCST is due 
to prior information, we also incorporate prior infor-
mation into MuCST, and find that MuCST is much 
better than stMVC with the same prior information, 
indicating the superiority of MuCST for spatial domain 
identification (Additional file 1: Fig. S10A).

Since MuCST integrates morphological and tran-
scriptional features with contrast learning to remove 
heterogeneity of spatially resolved data, it is natural to 
validate quality of features. Layer 6 and WM are criti-
cal spatial domains in brain, and evidence demonstrates 
that integrating all slices of DLPFC dataset can precisely 
discriminate these two domains [28, 29]. Interestingly, 
among these single slice based algorithms, only MuCST 
and STAGATE precisely discriminate Layer 6 and WM. 
We compare distribution density of the normalized 
features learned by various algorithms for the ground 
truth Layer 6 and WM (Fig.  3C). Surprisingly, features 
learned by MuCST significantly discriminate these two 
domains, whereas all these baselines fail to discriminate 
them (Fig.  3C, Additional file  1: Fig. S10B). For exam-
ple, deviation of distribution of raw features learned by 
MuCST is 1.69 and 7.62 for Layer 6 and WM respectively 
(p = 7.6E−3, two-sided Kolmogorov-Smirnov (KS) test), 
whereas that of MUSE is 0.56 (Layer 6) and 0.53 (WM) 
respectively (p = 0.70, two-sided KS test). Furthermore, 
either transcript or morphology also fails to discrimi-
nate Layer 6 and WM (transcript: p = 0.72, morphology: 
p = 0.67, two-sided KS test). These results demonstrate 
that morphology is critical complementary informa-
tion for characterizing and modeling spatial domains in 
spatial transcriptomics data, providing an alternative for 
integrating multiple slices of SRT data as Ref. [28, 29].

Trajectory of spatial domains is fundamental for reveal-
ing mechanisms of biological evolution [66], and PAGA 
[67] is employed to infer relations of spatial domains 
identified by various algorithms. MuCST and STAGATE 
precisely identify the organization of the cortical layers 
derives from L1 to L6 and WM with high PAGA score. 
But, the other baselines mistakenly draw connections 
among various spatial domains whose PAGA score is 
much less than them (Additional file 1: Section 1.8, Addi-
tional file  1: Fig. S11A). These results demonstrate that 
MuCST accurately captures intrinsic structure and evo-
lutionary relations of spatial domains. We further per-
form a comprehensive parameter analysis of MuCST on 
the DLPFC slice, demonstrating that MuCST is robust, 
and is capable of fast convergence during training (Addi-
tional file 1: Fig. S11B and S11C).

Two additional 10× Visium datasets from mouse pos-
terior and coronal brain are selected to further validate 
performance of MuCST, where the anatomical reference 
annotations are from the Allen Mouse Atlas. Figure  3D 
visualizes annotation of posterior tissue and spatial 
domains identified by various algorithms, where MuCST 
outperforms baselines (Additional file  1: Fig. S12). Spe-
cifically, transcript or morphology solely identifies Cer-
ebellum (CB) area, but fails to distinguish Hippocampal 
Formation (HPF) and Brain Stem (BS) (Additional file 1: 
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Fig. 3  MuCST significantly enhances performance of spatial domain identification in normal tissues. A Ground truth segmentation of cortical 
layers and white matter (WM) in slice 151673 of DLPFC data, and visualization of spatial domains identified by SEDR, DeepST, and MuCST in slice 
151673. B Boxplot of ARIs of various algorithms for spatial domains in all 12 slices of DLPFC, where x-axis denotes ARI, and the center line, box limits, 
and whiskers denote the median, upper and lower quartiles, and 1.5 × interquartile range, respectively. C Distribution density of cell features learned 
by SEDR, DeepST, and MuCST for Layer 6 and WM, where two-sided KS test is employed for significance. D Annotated histology image of mouse 
brain posterior (left), and spatial domains obtained by different methods in delineating different structures of posterior brain. E Annotated histology 
image of human intestine (left), and spatial domains obtained by different methods in delineating spatial structures of human intestine



Page 12 of 22Wang et al. Genome Medicine           (2025) 17:21 

Fig. S12A and S12B). DeepST cannot identify Cornu 
Ammonis (CA) and Dentate Gyrus (DG) areas, whereas 
MuCST precisely identifies the CA and DG areas within 
the HPF areas in the mouse brain (surrounded by the 
dashed squares, Fig.  3D), as well as the Cerebellar Cor-
tex and Dorsal Gyrus areas in the sagittal posterior 
mouse brain (surrounded by the dashed squares, Addi-
tional file  1: Fig. S12B), which are consistent with the 
reference annotations. Since no spot-level annotation is 
available, we employs the Silhouette Coefficient (SC) and 
Davies-Bouldin Index (DB) to measure compactness and 
separation of spatial domains, where MuCST achieves 
higher SC and lower DB score than baselines, indicating 
that these domains identified by MuCST are more pre-
cise from perspective of computation (Additional file  1: 
Fig. S13A). Furthermore, MuCST also has higher over-
lap ratio (Additional file  1: Fig. S13B), demonstrating 
that MuCST outperforms MUSE. We finally examine the 
expression levels of known bio-marker genes within the 
corresponding identified domains (Additional file 1: Fig. 
S13C), it is evident that these bio-marker genes have the 
highest expression levels in the spatial domains identi-
fied by MuCST than those identified by others. Moreo-
ver, MuCST also effectively detects the Cornu Ammonis 
and Dentate Gyrus in HPF regions, demonstrating that 
MuCST delineates the spatial domain in more details 
(surrounded by the dashed squares, Additional file 1: Fig. 
S14A and S14B). Furthermore, spatial domains identi-
fied by MuCST are with stronger regional continuity 
and fewer noise points than others (Additional file  1: 
Fig. S14B and S14C). These results indicate that MuCST 
is also promising for characterizing complicated spa-
tial domains in mouse brain. To validate contribution of 
DAPI staining to MuCST, we further adopt the mouse 
corona brain dataset with histology image stained by 
antibodies (Alexa Fluor 488 anti-NeuN) and DAPI, where 
MuCST precisely identifies the Ammon’s horn as well as 
the dentate gyrus structure in the hippocampus, dem-
onstrating that MuCST can effectively integrate mor-
phological information extracted from DAPI staining 
images (Additional file 1: Fig. S14D), region surrounded 
by square with white border).

The human intestine dataset [55] with four major 
spatial domains, such as epithelium, muscle, immune 
and endothelium region is shown in Fig. 3E. MUSE and 
MuCST precisely identify these four spatial domains, 
whereas baselines fail to discriminate them (Fig.  3E, 
Additional file  1: Fig. S15A). Furthermore, morphology 
is much more precise than transcript, SEDR, SpaGCN, 
STAGATE, conST, ConGI, and Spatial-MGCN because 
morphology dominates transcript in the intestine data-
set. Interestingly, MuCST precisely identifies all these 
four spatial domains, which are highly consistent with 

annotation (Additional file  1: Fig. S15B–S15E), demon-
strating that MuCST reaches a good balance between 
transcript and morphology. Furthermore, MuCST 
also achieves a better performance in terms of SC and 
DB scores, overlap ratio, and expression of known 
bio-marker genes within the corresponding identi-
fied domains (Additional file  1: Fig. S16A–S16C). These 
results clearly demonstrate that MuCST achieves accu-
rate spatial domain identification even on morphology-
dominant human intestine data.

Overall, all these results demonstrate that MuCST 
enhances the identification of spatial domains for spa-
tially resolved data from various tissues.

MuCST precisely reveals tumor heterogeneity from cancer 
spatially resolved data
Spatial transcriptomics technologies are widely applied 
to cancers, and it is natural to investigate the generaliza-
tion power of MuCST for revealing tumor heterogene-
ity. Six typical datasets, including 10 × Visium human 
breast cancer, humanpancreatic ductal adenocarcinoma 
(PDAC) [57], human invasive ductal carcinoma (IDC) 
[21], human HER2 breast cancer [59], human prostate 
cancer [58], and Alzheimer’s disease mouse brain data-
sets, are selected. The human breast cancer data consist 
of 3798 spots and 36,601 genes, which is manually anno-
tated by pathologists [25], including 20 regions and 4 
main morphotypes, i.e., ductal carcinoma in situ/lobular 
carcinoma in situ (DCIS/LCIS), healthy tissue (Healthy), 
invasive ductal carcinoma (IDC), and tumor edge regions 
(Fig. 4A left panel and Additional file 1: Fig. S17A).

Performance of MuCST on the human breast cancer 
dataset with the number of domains as 20 is shown in 
Fig. 4A (performance with various numbers of clusters is 
also investigated in Additional file 1: Fig. S17B). By com-
paring MuCST to baselines, MuCST achieves similar 
performance to stMVC and stMGATF, and outperforms 
other baselines (Fig. 4A and Additional file 1: Fig. S17C). 
In details, cancer-related spatial domains identified by 
MuCST are highly consistent with the manual annota-
tions (ARI = 0.586), whereas domains obtained by base-
lines (except for stMVC and stMGATF) with less regional 
continuity and more outliers, implying that MuCST is 
also promising for characterizing and identifying cancer 
spatial domains. Furthermore, either transcript or mor-
phology alone is insufficient to fully characterize cancer-
related spatial domains since ARI of them is 0.444 and 
0.260, respectively (Additional file 1: Fig. S17C), indicat-
ing that morphological and transcriptional information 
is complement for the characterization of tumor het-
erogeneity. Comparison among stMVC, stMGATF, and 
MuCST demonstrates that MuCST is much better than 
others if the same prior information is utilized, indicating 
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superiority of integrating morphology and SRT data 
(Additional file 1: Fig. S17D).

Then, we investigate quality of features learned by 
various algorithms for characterizing tumur heteroge-
neity of breast cancer by discriminating these 4 major 
morphotypes. Figure  4B describes distribution density 
of features learned by MUSE (left) and MuCST (right), 
where only MuCST precisely discriminate IDC, DCIS/
LCIS, tumor edge and healthy morphotype (two-sided 
KS test for significance). However, all these baselines, 
except for DeepST, fail to discriminate these four major 
morphotypes (Additional file 1: Fig. S18A). Interestingly, 
distribution density of features learned by MuCST not 
only discriminates these major morphotypes, but also 
characterizes evolutionary of morphotypes of breast 
cancer from healthy to tumor edge, and then to IDC 
(Fig. 4B, healthy: 0.67 ± 1.25 vs tumor edge: 0.82 ± 1.31, 
p = 1.3E−105; tumor edge: 0.82 ± 1.31 vs IDC: 0.94 ± 
1.38, p = 3.2E−52, two-sided KS test), which cannot be 
fulfilled by current baselines. These results demonstrate 
the proposed multi-modal contrastive learning strat-
egy captures intrinsic structure of complicated cancer-
related domains, providing an insight into mechanisms of 
tumors. Moreover, spatial domains identified by MuCST 
are divided into two categories with hierarchical cluster-
ing in terms of Pearson correlation coefficient, i.e., tumor 
and non-tumor group, where the latter one include 
tumor edge and healthy (Additional file  1: Fig. S18B). 
These results demonstrate that MuCST is also promising 
for characterizing and modeling tumor heterogeneity by 
exploiting meta-structure of spatial domains. And, to fur-
ther dissect tumor heterogeneity, differentially expressed 
genes (DEGs) among these four major morphotypes 
are obtained, which are highly associated with breast 
cancers. For example, APOE and C1Q1 in tumor edge 
regions are associated with the differential abundance 
of tumor-associated infiltration of macrophages (TAM) 
that is critical for survival outcomes of patients due to its 
role in promoting tumor angiogenesis [68, 69]. And, the 
up-regulated genes are involved in immune and signal 

pathway, and down-regulated ones are associated with 
cell cycle process (Additional file  1: Fig. S18C). Moreo-
ver, tumor heterogeneity results in hierarchical structure 
of spatial domains, i.e., annotation of IDC domain [32] is 
further divided into two sub-domains (domains 6 and 15, 
Fig. 4C). MuCST also precisely identifies them (Fig. 4C), 
where domain bio-marker genes, such as ABCC11 and 
TFF1, are differentially expressed, where ABCC11 is a 
known marker and multi-drug resistance gene in human 
breast cancer [70], and TFF1 is associated with tumor 
differentiation [71]. Notice that only MuCST significantly 
discriminates these two domains at feature level (p  = 
1.3E−2, Kolmogorov-Smirnov test, Additional file 1: Fig. 
S18D). These results demonstrate that MuCST reveals 
tumor heterogeneity from various levels, i.e., from 
macro-level (spatial domains) to micro-level (feature).

The human pancreatic ductal adenocarcinoma (PDAC) 
dataset sequenced by Legacy platform [57] is also 
adopted, which is manually annotated with the normal, 
cancer, duct epithelium and stroma regions (Fig. 4D left 
panel, and Additional file 1: Fig. S19A). Spatial domains 
identified by MuCST are highly consistent with the man-
ually annotated areas (Fig. 4D right panel), whereas base-
lines fail to identify pancreatic cancer related domains 
(Additional file 1: Fig. S19B). Specifically, almost all these 
baselines mix the cancer and non-cancer domains, dem-
onstrating superiority of MuCST for modeling tumor 
heterogeneity in complex tissues. We further conduct dif-
ferential expression analysis between cancer and normal 
region (Fig.  4E left), where four of the top 5 DEGs, i.e., 
KRT17, LAMC2, S100A14, and TM4SF1, are bio-markers 
for PDAC [72, 73]. Furthermore, these genes are signifi-
cantly associated with survival time of patients, further 
substantiating the accuracy of spatial domains identi-
fied by MuCST (log-rank test for significance, Additional 
file  1: Fig. S19C). Overlapping ratio of domains identi-
fied by MuCST are more consistent with annotation 
than baselines (Fig.  4E right panel, two sided Student’s 
test). The additional human HER2 breast cancer dataset, 
where the zoomed-in regions are manually annotated 

Fig. 4  MuCST accurately identifies cancer-related domains for revealing tumor heterogeneity. A Visualization of annotation of human breast cancer 
data with healthy, tumor edge, IDC and DCIS/LCIS morphotype (left), and spatial domains identified by DeepST, MUSE, and MuCST, respectively 
(right). B Distribution density of spot features of breast cancer data learned by MUSE (left) and MuCST (right) for four morphotypes, respectively, 
where x-axis denotes features and y-axis denotes estimated distribution density (two-sided KS test for significance). C Visualization of expression 
of TFF1 and ABCC11 between domain 6 and 15 (top), and violin plots of expression of these two genes (bottom). D Visualization of region-level 
manual annotation of the human pancreatic ductal adenocarcinoma dataset with the normal, cancer, duct epithelium and stroma regions [57] (left), 
and spatial domains identified by MuCST (right). E Overexpressed genes in cancer regions through differential expression analysis between tumor 
and non-tumor regions characterized by MuCST (left), and overlap ratio of tumor region and marker genes identified by different algorithms (right). 
F Histology images of brain tissue sections from transgenic mice at the middle stage, where the zoomed in regions correspond to the primary 
region of amyloid plaque deposition. G Disease-related spatial domains identified by MUSE and MuCST, respectively, where the zoomed in regions 
correspond to the primary region of amyloid plaque deposition

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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as rare ones associated with breast cancer, which was 
ignored by pathologist (Additional file  1: Fig. S20A and 
S20B). The transcript-alone approach misclassifies it as 
In situ cancer, rather than the annotated Breast glands, 
whereas the morphology-alone approach fails to identify 
these rare spatial domains (Additional file 1: Fig. S20C). 
The two semi-supervised algorithms, stMVC and stM-
GATF, along with MuCST, accurately identify these rare 
cancer domains, highlighted by white solid squares. Dif-
ferential gene analysis identify bio-marker genes of the 
marker genes of Breast glands and In situ cancer (Addi-
tional file 1: Fig. S20D–E). Furthermore, we also validate 
performance of MuCST with the human prostate can-
cer and human invasive ductal carcinoma (IDC) dataset 
(Additional file 1: Fig. S21), where spatial domains iden-
tified by MuCST are consistent with both region-level 
and spot-level annotations. For example, 4 regions cor-
respond to the annotated regions of predominantly IC 
(2, 6, 7, and 9), carcinoma in situ (5), benign hyperplasia 
(1), and predominantly non-tumor areas (3, 4, 8, and 10). 
By replacing ARI with NMI and F1-score, performance 
of MuCST on PDAC, HER2, IDC, and Prostate dataset 
are quit stable, showing robust of the proposed algorithm 
(Additional file 1: Fig. S22).

Finally, the Alzheimer’s disease (AD) mouse brain 
dataset is selected because it is morphology-dominated, 
where algorithms without integrating morphology are 
invalid. Fig.  4F visualizes immunofluorescence image 
of brain slice from a 5.7-month-old transgenic mouse, 
where white amyloid plaques highlight the primary areas 
of amyloid-beta ( Aβ ) deposition. MUSE and MuCST 
identify discrete spatial domains associated with amy-
loid plaque accumulation, whereas transcript- or mor-
phology-alone approach only recognizes coherent spatial 
domains of mouse brain tissue (Fig. 4G, Additional file 1: 
Fig. S23A). Furthermore, MuCST identifies the accumu-
lation of amyloid plaques in the hippocampal region that 
cannot be accomplished by other baselines. Moreover, 
MuCST also identifies the plaque-covered areas by pre-
serving the healthy brain regions on late-stage AD mouse 
brain slices (Additional file  1: Fig. S23B−S23D). Analo-
gously, differential expression analysis between disease 
and normal domain identify DEGs that are significantly 

enriched with gliogenesis and glial cell differentiation, 
which are associated with neuro-degenerative diseases 
in brain regions [74] (gene-ontology enrichment analysis, 
hypergeometric test, Additional file  1: Fig. S23E). Spa-
tial distribution of expression of Gfap and Cst3) is local-
ized in the Aβ accumulation, which are highly expressed 
in AD brain slices, exhibiting low expression in healthy 
brain slices (Additional file 1: Fig. S23F and S23G).

In summary, MuCST is more accurate to model and 
extract cancer-related domains, facilitating the under-
standing of tumor heterogeneity at various levels, which 
provides an alternative for integrative analysis of spatially 
resolved data.

MuCST precisely characterizes and removes noise 
in spatially resolved data
Evidence demonstrates that spatially resolved data suf-
fer from noise because of dedicated procedures to pre-
serve transcriptional and spatial information. Therefore, 
denoising is critical pre-processing for down-stream 
analysis [38, 75–77]. MuCST restores the original data 
with the compatible features, providing an alternative for 
denoising of spatially resolved transcriptomics.

To fully validate quality of restored data, the third-
party algorithm SCANPY is selected to perform spatial 
domain identifications on the original and restored data, 
respectively. Figure  5A illustrates the identified spa-
tial domains from the original (left) and restored (right) 
data of slice 151673 in DLPFC, where ARI dramatically 
improves from 0.181 to 0.480. Obviously, domains in 
the original data are suffer from high level of noise with 
mixed boundary, whereas these domains from the recon-
structed data are clear and accurate. Specifically, WM 
and Layer 6 are clearly classified in the restored data, 
demonstrating that MuCST captures intrinsic structure 
of spatially resolved data by removing noise. Further-
more, we compare distribution of features learned by 
SCANPY between the ground truth WM and Layer 6 
for the original and restored transcript, where difference 
between these domains is non-significant in the origi-
nal data (Fig. 5B left), but it is significant in the restored 
data (Fig.  5B right). In detail, the standard deviation of 
features from the original data is 1.03 and 0.76 for WM 

(See figure on next page.)
Fig. 5  MuCST precisely removes noise in spatially resolved data to facilitate down-stream analysis. A Visualization of spatial domains in slice 151673 
of DLPFC identified by SCANPY based on the raw (left) and restored (right) spatial transcriptomics data, respectively. B Distribution density of spot 
features of slice 151673 learned by SCANPY for Layer 6 and WM from the original (left) and restored (right) spatial transcriptomics data respectively, 
where x-axis denotes features and y-axis denotes estimated distribution density (two-sided KS test for significance). C Distributions of ARIs of various 
algorithms for identifying spatial domains with the original and reconstructed DLPFC data respectively, where y-axis denotes ARI, and one-sided 
Student’s t test for significance. D Visualizations of the original (up), reconstructed data (middle) and expression of layer-marker genes (bottom) 
in slice 151673, where each column corresponds to one layer (two-sided Student’s t-test for significance)
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Fig. 5  (See legend on previous page.)
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and Layer 6, respectively (p = 0.72, two-sided KS test), 
whereas that of the restored data is 2.43 and 0.67, respec-
tively (p  = 1.9E−79, two-sided KS test). These results 
show that MuCST precisely removes noise in spatially 
resolved data by exploiting the topological and multi-
modality relations among them, thereby enhancing the 
discriminative of features.

To check whether improvement of denoising is co-
factored by algorithms and data, we apply all these base-
lines to the original and restored DLPFC data, where 
distributions of ARIs of all these algorithms on DLPFC 
data are described in Fig. 5C. Surprisingly, all these algo-
rithms improve performance on the restored data than 
the original one, proving that improvement of perfor-
mance is not co-factored by the algorithms and data. 
Moreover, SCANPY, stLearn, and conST significantly 
improve performance of identifying spatial domains, 
and the other baselines also enhance performance with 
the restored data. For example, ARI of SCANPY (Tran-
script) increases from 0.205 ± 0.062 to 0.448 ± 0.071 
(p = 5.0E−9, one-side Student’s t-test), whereas that of 
conST and stLearn soars from 0.271 ± 0.057 and 0.437 
± 0.052 to 0.465 ± 0.118 and 0.544 ± 0.068 (p = 1.3E−9, 
one-side Student’s t-test). Even though improvement for 
Spatial-MGCN and DeepST is non-significant (Fig. 5C), 
the restored data lead to 14.98% and 4.6% improve-
ment, respectively. The possible reason why STAGATE 
enlarges deviation of ARIs on the restored data is that it 
also performs denoising with an auto-encoder strategy, 
i.e., double denoising procedures result in an undesir-
able performance. These results demonstrate that multi-
modality fusion is promising for characterizing and 
modeling noise in spatially resolved data, and MuCST 
can also serve as a pre-processing tool for down-stream 
analysis.

Since bio-marker genes are critical for spatial domains 
[55, 78], we then compare the expression of layer-marker 
genes for each layer between the original and restored 
data for slice 151673. Figure 5D visualizes expression of 
bio-markers for each layers, such as ACTA2 (Layer 1), 
C1QL2 (Layer 2), NTNG1 (Layer 4), and GABRA5 (Layer 
4) [52], for the original (up), and restored data (middle), 
where each column corresponds to a layer. It is easily 
observed that the bio-marker genes are not consistent 
with the structure of layers because of noise in the origi-
nal data, while all these bio-marker genes are located 
in the corresponding domains. Then, we compare the 
expression of layer bio-marker genes within and outside 
of the corresponding layer in the restored data, where 
all these bio-marker genes are significantly expressed 
within domain than outsides (two-sided Student’s t-test, 
Fig.  5D bottom). Even though difference of these layer 
bio-marker genes is also significant, the difference is not 

as large as these in the restored data. These results dem-
onstrate that MuCST precisely removes noise in spatially 
resolved data by augmenting expression of layer bio-
marker genes, thereby improving quality of data.

The human breast cancer dataset is also selected vali-
date performance of MuCST for denoising (Fig.  4A), 
where all these algorithms achieves higher accuracy on 
the restored data than the original one (Additional file 1: 
Fig. S24A). Particularly, transcript-alone approach also 
enhances ARI from 0.444 to 0.546, and morphology-
alone method increases ARI from 0.263 to 0.283, prov-
ing that improvement of accuracy is not co-factored by 
algorithms. Moreover, we also compare distribution 
density of cell features learned by various algorithms for 
IDC and DCIS/LCIS, where the difference of features for 
these two layers is significant on the restored data, and is 
non-significant on the original one (Additional file 1: Fig. 
S24B, two-sided KS test), demonstrating that MuCST 
also precisely removes noise in breast cancer dataset. 
Finally, we also validate that the restored data also facili-
tate identification of spatial domains with bio-marker 
genes (Additional file 1: Fig. S24C). In summary, MuCST 
precisely characterizes and removes noise with multi-
modal contrastive learning, which can serve as critical 
pre-processing step for analyzing spatially resolved data.

MuCST is applicable for spatial omics data with various 
platforms
Here, we investigate the applicability of MuCST with spa-
tially resolved data generated with different platforms, 
such as STARmap [11], osmFISH [54], Slide-seq V2 
[14], and Stereo-seq [15]. The mouse primary visual cor-
tex dataset generated by STARmap (Fig. 6A) is selected, 
which is annotated as seven distinct layers from raw flu-
orescence data (Fig.  6B). And, either transcript or mor-
phology cannot fully characterize spatial domains with 
ARI 0.262 and 0.059 respectively because STARmap data 
is dominated by transcript. MuCST achieves the best 
performance among these unsupervised baselines with 
ARI 0.652, whereas that of STAGATE, SpaGCN, MUSE, 
ConGI, and conST is 0.586, 0.492, 0.057, 0.510, and 0.400, 
respectively (Fig. 6B, Additional file 1: Fig. S25A). stMVC 
and stMGATF achieve an excellent performance because 
they make use of 50% labels for spatial domains to guide 
feature learning, which is invalid if the balance of tran-
script and morphology loses. These results demonstrate 
that MuCST is also promising for integrating spatially 
resolved data generated with STARmap platform.

We then validate the applicability of MuCST with three 
additional datasets from various platforms without mor-
phological information, including the mouse brain cor-
tex data with osmFISH [54], mouse hippocampus tissue 
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with Slide-seq V2 [14], and mouse olfactory bulb tissue 
with Stereo-seq [15]. The mouse brain cortex is a non-
lattice-shaped spatially resolved transcriptomics data-
set generated by osmFISH, where spatial domains are 
labeled with different colors (Additional file 1: Fig. S25B). 

Compared to the state-of-the-art algorithms, MuCST 
and STAGATE achieve the best performance with ARI 
∼0.500, demonstrating that the proposed model also 
works well for osmFISH data. The mouse hippocampus 
dataset generated with Slide-seq V2 are annotated based 

Fig. 6  MuCST is applicable for spatially resolved data with various platforms. A Raw DAPI image of the V1 tissue annotated with seven functionally 
distinct layers (upper panel), and seven representative cells from different layers (bottom panel). B Manual annotation of seven layers, and spatial 
domains identified by single modality and MuCST. C Visualization of mouse hippocampus tissue from Allen Mouse Brain Atlas (left), visualization 
of mouse hippocampus tissue annotated by [41] (middle), and spatial domains identified by MuCST (right). D Visualization of the spatial domains 
identified by MuCST, and the corresponding marker spatial gene expressions. The identified domains are aligned with the annotated hippocampus 
region of the Allen Mouse Brain Atlas
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on the Allen Brain Atlas [41] (Fig.  6C left and middle 
panel). MuCST successfully identifies annotated spa-
tial domains, including the dentate gyrus (DG) and the 
pyramidal layers within Ammon horn, which are further 
separated into fields CA1, CA2, and CA3. And, it outper-
forms DeepST on the delineation of CA3 and DG (Addi-
tional file 1: Fig. S25C). Moreover, the spatial distribution 
of expression of domain bio-marker genes are consistent 
with annotation of hippocampus regions, where each 
column corresponds to a domain identified by MuCST 
(Fig.  6D). In contrast, baselines mix some domains, for 
example, DeepST merges the MH and LH (Additional 
file 1: Fig. S25C).

Finally, we apply MuCST to the coronal mouse olfac-
tory bulb tissue acquired with Stereo-seq [15], which is 
annotated with the DAPI image, including the olfactory 
nerve layer (ONL), glomerular layer (GL), external plexi-
form layer (EPL), mitral cell layer (MCL), internal plexi-
form layer (IPL), granule cell layer (GCL), and rostral 
migratory stream (RMS) (Additional file  1: Fig. S25D). 
SCANPY, DeepST, and MuCST precisely identify 
domains in the outer layers, i.e., ONL, GL, and EPL, 
while SCANPY mixes GCL with the outer IPL region in 
inner structure (Additional file 1: Fig. S25E). We further 
adopt the spatial distribution of marker genes of each 
anatomical region to validate MuCST-identified domains, 
where a well match is observed, demonstrating domains 
identified by MuCST are consistent with annotations 
(Additional file 1: Fig. S25F). Overall, MuCST effectively 
leverage the whole transcript and spatial information to 
discern the relevant anatomical regions.

Discussion
The spatial transcriptomics measures gene expression at 
the cell level by retaining the associated spatial context, 
and integrating the gene expression, spatial coordinates, 
and morphological information of cells facilitates the 
identification of coherent cell patterns to understand the 
structure, functions and organization of tissues. How-
ever, it is highly non-trivial to integrate morphology and 
spatial transcriptomics because of noise and heterogene-
ity of data. In this study, we propose a novel and efficient 
algorithm (MuCST) to address this issue with contrastive 
learning.

In spatially resolved transcriptomics data, charac-
terization of cellular heterogeneity is critical for reveal-
ing the structure and functions of tissues in health and 
disease. We first demonstrate that MuCST precisely 
reveals structure of domains by manipulating noise and 
quality of each modality in simulated datasets (Fig. 2). 
Then, we testify MuCST with morphology and SRT 
data from normal tissues, where MuCST discriminates 
critical domains with a single slice that previously only 

be separated by integrating multiple slices (Fig.  3). 
Furthermore, we validate that MuCST also precisely 
reveals tumor heterogeneity from five cancer spatially 
resolved datasets, where it effectively dissects tumor 
heterogeneity from the macro- and micro-level (Fig. 4). 
We further prove that MuCST also accurately models 
noise of spatially resolved data under the guidance of 
feature learning, which serves as pre-processing step 
for down-stream analysis (Fig. 5). We also validate that 
MuCST is also applicable to spatial omic data gener-
ated with various platforms (Fig. 6).

MuCST integrates morphology images and SRT data 
with contrastive learning to obtain discriminative and 
compatible representations of spots, providing a bet-
ter way to characterize structure of tissues that cannot 
be fulfilled with single modality approaches. Here, we 
show that MuCST precisely identifies spatial domains 
from the normal as well as tumor tissues, covering dif-
ferent species, diseases, and platforms. The major differ-
ence between MuCST and state-of-the-art approaches 
lies in network-based multi-modality contrastive learn-
ing. Additionally, contributions of each component in 
MuCST is also investigated with comprehensive ablation 
studies on various datasets (Additional file 1: Section: 1.8, 
Additional file  1: Fig. S26–S29), where each component 
of MuCST is indispensable, further confirming the effec-
tiveness of MuCST.

Pathology is fundamental for diagnosis and therapy 
of cancers, thereby enhancing capability of MuCST 
for addressing pathological features of cells is prom-
ising for the clinical pratice. Recently, three typical 
histology-specific models, such as Virchow [79], UNI 
[80], and Prov-GigaPath [81], are proposed to establish 
general-purpose foundation models for computational 
pathology. We exploit the possibility of incorporat-
ing histology-specific models into MuCST by replac-
ing ResNet+SimCLR with either of Virchow, UNI and 
Prov-GigaPath. Figure S30 and Fig. S31 depict per-
formance of variants of MuCST on the human breast 
cancer, DLPFC, and intestine dataset, respectively. In 
details, Fig. S30A describes performance of MuCST 
with various models for human breast cancer dataset, 
where histology-specific models improve performance 
of algorithms for H&E stained images, i.e., morphologi-
cal features identified by histology-specific models are 
more accurate than ResNet+SimCLR. In details, ARI 
of ResNet+SimCLR is 0.263, whereas that of Virchow, 
UNI and Prov-GigaPath is 0.304, 0.449, and 0.430, 
respectively. Figure S30A2 shows that performance 
of MuCST enhances by replacing histology-specific 
models with ResNet+SimCLR, where ARI of MuCST 
increases from 0.586 to 0.633.
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However, histology-specific models are not suit-
able for normal tissues (Additional file  1: Fig. S30B). 
For example, ARI of ResNet+SimCLR for slice 151673 
of DLPFC is 0.283, whereas that of Virchow, UNI and 
Prov-GigaPath is 0.260, 0.270 and 0.217, respectively 
(Additional file  1: Fig. S30B1). And, ARI of MuCST 
decreases from 0.645 to 0.621 (Additional file  1: Fig. 
S30B2). Performance of these algorithms on all 12 slices 
of DLPFC dataset is presented in Fig. S30C, where con-
sistence occurs. Moreover, performance of various 
methods on the human intestine dataset demonstrates 
ResNet+SimCLR achieves similar performance with 
histology-specific models (Additional file 1: Fig. S31A–
S31D). The reason is that morphology images from 
normal and cancer tissues differ greatly, where histol-
ogy-specific models are more precise to characterize 
tumor heterogeneity. These results demonstrate that 
MuCST flexibly integrates histology-specific models, 
showing its potential for clinical practice.

We see ample opportunities to extend potential clinical 
applications of MuCST. For example, MuCST provides a 
flexible framework to integrate pathological images and 
spatial transcriptomics data, which likely help clinicians 
to make decision by utilizing macro-level features of 
images and micro-level features of genes. Furthermore, 
we will also investigate whether spatial distribution of 
cancer-related domains facilitates clinicians to determine 
surgical plans in future.

Conclusions
In this work, we introduce a novel multi-modal contras-
tive learning algorithm, which is designed for addressing 
challenges inherent in integrating histology images with 
spatial transcriptomics data. MuCST not only facilitates 
the integration of multi-modal spatially resolved data, 
but also mitigates the impacts of noise and heterogeneity 
of multi-modal data.

Even though MuCST performs well on spatially tran-
scriptomics datasets generated by 10× Visium, Legacy 
ST, STARmap, and Slide-seq, its ability to integrate 
morphology images with other spatial omics data is 
not fully investigated, such as Spatial-ATAC-seq data, 
which measures the chromatin accessibility land-
scape. Integrating these data bridges spatial domains 
with non-coding regulation in genome, facilitating the 
understanding of functions and structure of genes, 
which provides a more comprehensive way to investi-
gate structure of tissues. In the future research, we will 
focus on integrating multi-omics data, and extending 
its clinical applications.
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