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Abstract 

Background  Mendelian randomization (MR) leverages trait associated genetic variants as instrumental variables 
(IVs) to determine causal relationships in epidemiology. However, genetic IVs for complex traits are typically highly 
heterogeneous and, at a molecular level, exert effects on different biological processes. Exploration of the biological 
underpinnings of such heterogeneity can enhance our understanding of disease mechanisms and inform therapeutic 
strategies. Here, we introduce a new approach to instrument partitioning based on enrichment of Mendelian disease 
categories (pathway-partitioned) and compare it to an existing method based on genetic colocalization in contrast-
ing tissues (tissue-partitioned).

Methods  We employed individual- and summary-level MR methodologies using SNPs grouped by pathway 
informed by proximity to Mendelian disease genes affecting the renal system or vasculature (for blood pressure (BP)), 
or mental health and metabolic disorders (for body mass index (BMI)). We compared the causal effects of pathway-
partitioned SNPs on cardiometabolic outcomes with those derived using tissue-partitioned SNPs informed by colo-
calization with gene expression in kidney, artery (BP), or adipose and brain tissues (BMI). Additionally, we assessed 
the likelihood that estimates observed for partitioned exposures could emerge by chance using random SNP 
sampling.

Results  Our pathway-partitioned findings suggest the causal relationship between systolic BP and heart disease 
is predominantly driven by vessel over renal pathways. The stronger effect attributed to kidney over artery tissue 
in our tissue-partitioned MR hints at a multifaceted interplay between pathways in the disease aetiology. We con-
sistently identified a dominant role for vessel (pathway) and artery (tissue) driving the negative directional effect 
of diastolic BP on left ventricular stroke volume and positive directional effect of systolic BP on type 2 diabetes. We 
also found when dissecting the BMI pathway contribution to atrial fibrillation that metabolic-pathway and brain-
tissue IVs predominantly drove the causal effects relative to mental health and adipose in pathway- and tissue-parti-
tioned MR analyses, respectively.
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Conclusions  This study presents a novel approach to dissecting heterogeneity in MR by integrating clinical pheno-
types associated with Mendelian disease. Our findings emphasize the importance of understanding pathway-/tissue-
specific contributions to complex exposures when interpreting causal relationships in MR. Importantly, we advocate 
caution and robust validation when interpreting pathway-partitioned effect size differences.

Keywords  Body mass index, Blood pressure, Cardiovascular disease, Mendelian disease, Colocalization, Mendelian 
randomization, Genetic epidemiology

Background
Mendelian randomization (MR) is a statistical method 
used in epidemiology to study the causal relationship 
between a risk factor (exposure) and an outcome (dis-
ease or trait) by leveraging genetic variants derived from 
genome-wide association studies (GWAS) as instrumen-
tal variables [1] (IV). The technique is based on the prin-
ciples of Mendelian inheritance, which states that genetic 
variants, such as single nucleotide polymorphisms 
(SNPs), are randomly assigned during meiosis and there-
fore should be less prone to confounding factors or 
reverse causation that typically plague observational 
studies (subject to meeting certain assumptions [2]).

With the availability of highly powered GWAS for com-
plex traits, we are presented with large numbers of trait-
associated SNPs from which to select genetic IVs of the 
exposure, which can yield variable causal estimates [3]. 
There are various sources of heterogeneity which vio-
late the assumptions of MR and should be avoided when 
selecting instrumental variables because they can induce 
bias in the causal effect. These include (1) horizontal plei-
otropy, which occurs when one or more SNPs influence 
the outcome through multiple independent pathways, 
and (2) weak instrument bias, which can result in impre-
cise causal estimates and increase heterogeneity [4]. Of 
chief interest in this study is heterogeneity arising due to 
endpoint phenotypes being de facto composites, repre-
senting divergent underlying biological mechanisms cap-
tured by different genetic instruments. Unlike the sources 
of bias mentioned above, leveraging this source of genetic 
heterogeneity in IV selection can improve understand-
ing of disease aetiology and help design better targeted 
interventions.

Three broad types of approaches have been used so far 
when studying biological sources of heterogeneity in MR: 
direct clustering based on SNP associations with expo-
sure and outcome [5, 6], clustering of variant associa-
tions across a set of traits [7–9], or instrument clustering 
informed by tissue gene expression patterns [10–13]. In 
particular, a biological hypothesis-driven approach pro-
posed in Leyden et  al. [11] clusters genetic instruments 
for body mass index (BMI) based on the tissue (brain or 
subcutaneous adipose) where a given BMI SNP is found 
to colocalize with an expression quantitative trait locus 

(eQTL). The Bayesian colocalization method coloc [14] 
is employed here to compare the association signals 
at a specific genomic region for the two traits of inter-
est (gene eQTL and BMI). In this way, a given genetic 
instrument is putatively linked to a particular gene whose 
expression (either in subcutaneous adipose or brain tis-
sue, or both) potentially contributes differentially to a set 
of cardiometabolic traits.

Although this approach was used to prioritize the puta-
tive causal tissue types underlying BMI-associated genes, 
in general the coloc method as originally implemented 
has been shown to lack specificity when assigning SNPs 
to genes on its own, particularly when using eQTL data 
due to the co-expression of nearby genes [15]. Another 
approach of prioritizing candidate genes at GWAS loci 
is to leverage the knowledge of Mendelian monogenic 
diseases, which are caused by rare mutations with large 
effects on phenotypes. Several studies have reported an 
enrichment of Mendelian disease genes near GWAS loci 
across various phenotypes, suggesting shared genetic 
basis between complex and Mendelian traits [16–18]. 
While not all Mendelian disease genes are equally rele-
vant for a given complex trait, the alignment of genetic 
associations to shared phenotypes or symptoms of 
monogenic and complex forms of disease is a key metric 
for gene prioritization [19].

In this paper, we introduce a new approach to strati-
fying and annotating genetic instruments for common 
complex exposures used in MR informed by Mendelian 
disease categories. Blood pressure (BP) is a highly poly-
genic risk factor for a number of cardiovascular [20–22] 
and metabolic [23–25] conditions, with both vasculature- 
[26–28] and kidney- [29–31] expressed genes shown pre-
viously to be of key importance. Kidneys control blood 
pressure by regulating blood volume and electrolyte bal-
ance [32], chiefly through natriuresis response [33] and 
the renin–angiotensin–aldosterone system (RAAS) hor-
monal axis. Accordingly, impaired kidney function has 
long been linked to hypertension [34]. The vasculature 
regulates blood pressure via modulation of vascular tone. 
This is achieved through the processes of vasoconstric-
tion and vasodilation, controlled by the smooth muscle 
cells in the arterial walls [35]. The endothelium lining 
the inner surface of blood vessels plays a pivotal role by 
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releasing an array of vasoactive substances [36]. Endothe-
lial cells secrete endothelin, a potent vasoconstrictor, and 
nitric oxide, the key vasodilator [37, 38], and can also 
influence blood pressure through inflammatory mecha-
nisms [39]. If instruments acting on BP via these two key 
mechanisms show different estimates of effect on an out-
come in MR, we hypothesize that this will be due to dis-
tinct biological effects represented in one or both subsets 
of instruments.

We begin by contrasting the kidney and vascular 
components of blood pressure burden on cardiometa-
bolic disease. To achieve this, we carry out one-sample 
and two-sample multivariable MR analyses utilizing 
blood pressure (systolic and diastolic) exposure variants 
grouped by co-sharing genetic loci with Mendelian dis-
ease genes whose symptoms affect either the renal system 
or vasculature (i.e. pathway effects) (Fig. 1). We compare 
our results to the colocalization-based method proposed 
previously [11, 12] by linking blood pressure genetic vari-
ants to regulation of gene expression in kidney or arter-
ies (tissue effects). We then return to the BMI exposure 
reported by [12]to ask if the effect of variants grouped 
by metabolic and mental health Mendelian disease cor-
responds to the effects obtained by subcutaneous adi-
pose and brain tissue. The comparison of both methods 
provides complementary insight on the genetic signals 
underlying symptomatic effects on the system (using the 
pathway approach) or molecular effects originating from 
the tissue (using the tissue approach). Finally, using ran-
dom re-sampling of the genetic IVs of the exposure, we 
investigate if the effect size differences observed in path-
way- or tissue-partitioned MR analyses are likely to have 
arisen by chance. Our findings provide valuable insights 
into the biological underpinnings of causal links between 
BP or BMI and cardiometabolic traits.

Methods
Exposure and outcome GWAS datasets
Our exposure datasets consisted of the most highly pow-
ered meta-analysed GWAS summary statistics at the 
time of analysis. The systolic (SBP) and diastolic blood 
pressure (DBP) GWAS (N: 757,601) undertaken by ICBP 
in 2018 [27] and body mass index (BMI) conducted by 
the GIANT consortium in 2018 (N: 681,275) [40] (Addi-
tional file  1: Table  S1). These large studies, comprising 
~ 0.7 million individuals of European ancestry respec-
tively, were highly powered and returned a number of top 
variants (~ 900) implicated in a variety of biological pro-
cesses in each GWAS.

Our outcome GWAS datasets included common cardi-
ometabolic diseases: atrial fibrillation (AF) (N cases/con-
trols (c/c): 60,620/970,216) [41], heart failure (HF) (N c/c: 
47,309/930,014) [42], coronary heart disease (CHD) (N 

c/c: 60,801/123,504) [43], myocardial infarction (MI) (N 
c/c: 43,676/128,199) [43], stroke (N c/c: 40,585/406,111) 
[44], and type 2 diabetes (T2D) (N c/c: 12,171/56,862) 
(see Additional file  1: Table  S1 for further details). 
GWAS for continuous measurements of cardiac function 
included left ventricular end-diastolic volume (LVEDV), 
left ventricular end-systolic volume (LVESV), left ventric-
ular ejection fraction (LVEF), and left ventricular stroke 
volume (SV), all N: 36,041 UK Biobank participants [45]. 
As a negative control, we selected an outcome whose 
incidence is likely not to be causally impacted by BMI or 
BP as indicated by a previous MR study [46]: age-related 
macular degeneration (AMD) [46] (N c/c: 14,034/91,214).

We note that we used exposure and outcome GWAS 
datasets with non-overlapping participants whenever 
feasible, to limit bias [47], however a significant propor-
tion of individuals in the AF and early-onset AMD (~ 
20–40%), as well as in the left ventricular function GWAS 
studies were obtained based on UK Biobank individu-
als, who are also included in our exposure GWAS for 
BMI and BP. We note there is some differential power 
among outcome datasets, including the negative control 
outcome, in our study. This is because some of the more 
common cardiovascular outcomes included have now 
been analysed in very large meta-analyses. A full break-
down of sample sizes in all datasets included is provided 
in Additional file 1: Table S1.

Genetic instrument selection
BMI and BP GWAS summary statistics were obtained 
in GWAS-VCF [48] format from the OpenGWAS 
platform and were subsequently converted to the 
TwoSampleMR [49] package format using the “gwas-
vcf_to_TwoSampleMR” function from the gwasglue [50] 
R package. Genetic instruments for each exposure were 
identified based on the conventional genome-wide signif-
icance threshold (p value < 5 × 10−8). Independent instru-
ments were clumped using “ld_clump” wrapper for plink 
ver 1.943 [51] from the ieugwasr R package [52] based 
on strict linkage disequilibrium (LD) parameters (r2 was 
< 0.001 within 10 Mbp in 1000 Genomes [53] European 
panel). Note that strict clumping parameters have been 
applied to ensure all SNPs incorporated in our MR analy-
ses are valid independent instrumental variables [54]. We 
sometimes used SNP proxies showing high genetic cor-
relation (r2 > 0.8) in the instances when the chosen SNP 
was missing in the outcome dataset.

Assignment of genetic instruments to pathways: 
MendelVar
Having obtained 887 independent genetic IVs for BMI, 
914 for diastolic BP, and 863 for systolic BP, we used 
MendelVar [19] to partition IVs into subsets enriched 
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Fig. 1  An overview of this study’s workflow for Mendelian disease gene pathway-partitioned genetic instruments and colocalization-derived 
tissue-partitioned genetic instruments with the aim of investigating pathway-specific effects of blood pressure and body mass index 
on cardiometabolic traits
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for Mendelian disease categories. Briefly, we used the 
MendelVar [19] pipeline to generate LD-based genomic 
intervals around each input SNP (delimited by most dis-
tant SNP with minimum r2 = 0.8 within 1 Mbp in either 
direction). Then, we checked for enrichment of pheno-
type ontology terms linked to Mendelian disease genes 
(defined as coding region with 1000 bp 5′ and 3′ flanking 
regions) present within the interval using the INRICH 
[55] software contained in the MendelVar platform. In 
total, the trait associated SNPs were queried against the 
MendelVar database comprising ~ 11,500 disease/gene 
relationships, of which there are ~ 6800 distinct disease 
labels [19].

Assignment of genetic instruments to tissues: 
colocalization
We followed the method described in Leyden et al. [11] 
to assign SNPs to subsets with evidence for colocaliza-
tion with an eQTL in at least one of the two chosen tis-
sue types (kidney and vasculature). For BP traits, we used 
cis-eQTLs in kidney (NephQTL2 [56] tubulointerstitial 
n = 311 and glomerular n = 240) and arteries (GTEx 8 
[57] aorta n = 387 and coronary n = 212); similar sample 
sizes across tissues should result in comparable power. 
We used intervals of ± 100 kbp centred on each exposure 
SNP for colocalization in the coloc R software [58], and 
a stringent posterior probability H4 (PPH4, hypothesis 4: 
shared causal variant between exposure GWAS and cis-
eQTL dataset) threshold of 0.9 to partition SNPs into 
coloc-based tissues.

Enrichment analysis within subsets
We used ToppFun from ToppGene Suite [59] and over-
representation module in ConsensusPathDB [60] (both 
with default settings) to test for global enrichment of 
functional terms in gene subsets identified by Mendel-
Var and coloc harnessing popular ontologies, such as GO 
[61], Reactome [62], and KEGG [63].

One‑sample Mendelian randomization analyses
Our methodology for one-sample MR analyses followed 
the protocol described [11] and utilized individual-level 
data from the UK Biobank [64] (Application number: 
81499). This involved the creation of separate genetic 
risk scores (GRS) for each group of SNPs: all SNPs (i.e. 
all trait associated SNPs identified in the GWAS results) 
and each of the subsets of those SNPs identified by the 
pathway-/tissue-partitioning methods. Weighted GRS 
were calculated based on the number of effect alleles pos-
sessed by each individual and weighted by the respec-
tive SNP effect sizes obtained from the original GWAS. 
Detail of QC applied to the individual-level genotype 
data in the UKB has been described in full previously 

[65]. Briefly, the included comprised 334,398 unrelated 
people of European descent and was established after 
excluding participants with withdrawn consent, geneti-
cally related individuals (n = 79,450), or those who did 
not cluster with “white European” group (n = 23,669) 
based on K-means clustering (K = 4). Additional stand-
ard exclusions were applied comprising mis-matches in 
genetically determined and self-reported sex, putative 
sex chromosome aneuploidy, and outliers in heterozygo-
sity (n = 849).

We first evaluated the overall exposure effects (for 
SBP, DBP, and BMI) in standard MR analyses employ-
ing either linear or logistic regression using AER [66] and 
mass [67] R packages. We analysed all available outcomes 
(Additional file  1: Table  S2: AF, HF, CHD, MI, T2D, 
stroke, AMD, LVEDV, LVESV, LVEF, SV) and adjusted 
for variables such as age, sex, the leading 10 principal 
components, and a binary marker for genotype chips. A 
rank-based inverse normal transformation was applied to 
continuous cardiac outcomes (LVEDV, LVESV, LVEF, SV) 
before analysis. We carried out further univariable MR 
analyses using each pathway- or tissue-partitioned GRS 
as exposures in turn. Finally, we deployed multivariable 
models which incorporated either the two pathway- or 
two tissue-partitioned GRS to quantify the direct effect 
of each subset on the outcome.

To estimate the type 1 error rate due to the fraction of 
shared individuals between our GRS construction GWAS 
datasets and the cases and controls in the UK Biobank 
sample, we used the “sample overlap” web app [47]. The 
results indicated that, based on the strong F-statistics 
of our instruments, the overlap of samples is unlikely to 
cause significant bias in our analyses (type 1 error rate 
< 0.05).

Sensitivity analyses
We also used GWAS exposure and outcome datasets 
described above in two-sample MR analysis. Firstly, we 
carried out univariable MR analysis, using all top SNPs 
for a given exposure and then pathway or tissue subsets 
separately. Secondly, for tissue-partitioned subsets, we 
ran multivariable MR including both tissue subsets to 
obtain mutually adjusted “independent” effects as per 
[12]. This method is based on the application of mul-
tivariable MR whereby estimates on each exposure are 
obtained for all genetic instruments in the model [68]. 
It does so by taking advantage of the differential evi-
dence for colocalization between tissues to differentially 
weight each instrument’s effect size by coloc’s PPH4 in 
each tissue-partitioned exposure, respectively. We were 
not able to carry out two-sample multivariable MR for 
pathway-partitioned SNPs due to lack of a suitable metric 
by which to scale individual variants’ effects. We chose 
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the “TwoSampleMR” [49] R package for the standard 
inverse-variance weighted, mode-weighted, median-
weighted and MR-Egger MR analyses as well as multi-
variable MR analysis. We then calculated instrument 
strength (F-statistics, R2) and heterogeneity (Cochran’s Q 
and I2) [69]. Steiger directionality tests were additionally 
performed on all partitioned exposure-outcome combi-
nations examined which confirmed that our partitioned 
IVs do not produce estimates which are consistent with 
reverse cause.

In addition to including a negative control for the out-
come (AMD), we also attempted to provide a negative 
control SNP partitioning for pathway-partitioned SNPs. 
To achieve this, we subset exposure SNPs by a feature 
which was not expected to biologically influence the 
outcome (mode of inheritance: autosomal dominant or 
recessive) and which was not significantly enriched in 
any blood pressure pathway partition. We did not run 
this control example for BMI, since we did find enrich-
ment of autosomal dominant disease-assigned SNPs 
among mental health SNPs in the dataset, mostly driven 
by intellectual development disorders (χ2 = 10.3, N = 71, 
p value = 0.001, Supplementary Table 3).

Random sampling of SNP subsets
Finally, we decided to empirically determine how often 
the difference in MR estimates between randomly drawn 
SNP subsets equals or exceeds the one observed for path-
way- or tissue-partitioned instruments. When simulat-
ing subsets for comparison with pathway-partitioned 
instruments, we drew random n1 SNPs without replace-
ment and then separately n2 SNPs without replacement 
(where n1 and n2 correspond to the number of SNPs in 
the original SNP subsets) to represent two SNP subsets 
which can randomly overlap. For tissue partitions, the 
procedure for drawing SNPs was modified to randomize 
the association between SNP, tissue, and colocalization 
probability. In that case, we first randomly permuted 
all PPH4 values across both tissues and variants, follow-
ing which we extracted SNPs with PPH4 values above the 
chosen threshold (0.9 in our analysis and 0.8 in replica-
tion of Leyden et  al. [11], see below) to be used as two 
random SNP subsets. We then ran equivalent 1-sample 
and 2-sample MR analyses as for the “true” pathway- 
and tissue-partitioned IVs. The entire procedure was 
repeated 1000 times per exposure-outcome combination 
and analysis type.

Replication of Leyden et al. [11]
We re-analysed the Leyden et  al. [11] dataset for select 
outcomes to compare the MR results using BMI 
exposures assigned by gene expression to the adi-
pose (86 SNPs) and brain (140 SNPs) tissues with our 

pathway-partitioned approach. We also established the 
extent to which the difference between tissue-partitioned 
IVs could emerge by chance, using random instrument 
re-sampling as described above.

Results
Assignment of variants to pathways—MendelVar
To assign blood pressure SNPs to pathways, we lever-
aged data from the MendelVar resource. Using Mendel-
Var, we assessed whether Mendelian disease genes (and 
their symptoms) were overrepresented among blood 
pressure GWAS loci or in strong LD (Fig.  1). The two 
most enriched terms were “abnormal renal morphology” 
(DBP: 90 SNPs, p value = 8 × 10−5; SBP: 84 SNPs, p value 
= 2.8 × 10−4, Additional file 1: Tables S4–S7) and “abnor-
mal blood vessel morphology” (DBP: 79 SNPs, p value 
= 1.2 × 10−4; SBP: 83 SNPs, p value = 2 × 10−5) from the 
Human Phenotype Ontology (HPO) [70]. A proportion 
of SNPs in the “renal” and “vessel” subsets overlapped by 
~ 28% (DBP, 37 SNPs) and ~ 33% (SBP, 42 SNPs) (Addi-
tional file 2: Fig. S1 A–B).

We then used independent ontologies not related to 
Mendelian disease (featured in ConsensusPathDB [60] 
and ToppGen [59]) to check if they provided orthogo-
nal evidence for enrichment in a given pathway or tis-
sue (Additional file 3: Supplementary tables enrichment 
(STE)). We found that kidney-related terms were signifi-
cantly enriched in the “renal” gene set (Additional file 3: 
Supplementary Dataset STE 1–4), e.g. renal system devel-
opment (Gene Ontology [71], DBP q value: 2.6 × 10−9; 
SBP q value: 4.7 × 10−6). We also observed significant 
overrepresentation of gene sets related to metabolism, 
hormonal regulation, type 2 diabetes, and cancer. Our 
“vessel” gene set was found to contain a strong overrepre-
sentation of cardiovascular terms across many ontologies 
(Additional file 3: Supplementary Dataset STE 5–8): e.g. 
blood vessel development (Gene Ontology, DBP q value: 
7.7 × 10−6; SBP q value: 4.8 × 10−10). To a lesser extent, we 
found enrichment of kidney-related terms (renin secre-
tion, EPO signalling pathway) in the “vessel” gene set and 
cardiovascular-related terms (blood vessel development, 
heart development) in the “renal” set which is not unex-
pected given the overlap of “renal” and “vessel” SNPs in 
our partitions.

For BMI, we used the Alliance of Genome Resources 
slim version of Disease Ontology [72] (28 general dis-
ease types). The top most enriched categories were 
“disease of metabolism” (45 SNPs, p value = 8.8 × 10−4, 
Supplementary Tables  8–9) and “disease of mental 
health”/“developmental disorder of mental health” (39 
SNPs, p value = 4.1 × 10−3). Six SNPs (~ 7%) were shared 
between the “metabolic” and “mental health” sets (Sup-
plementary Fig.  1 C). The evaluation of “mental health” 
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gene sets for enrichment of non-Mendelian disease func-
tional ontologies highlighted neuronal mechanisms, in 
particular synaptic signalling, e.g. neuronal system (Reac-
tome [73], q value: 1 × 10−3). The strongest enrichment of 
terms in the “metabolic” gene set were related to metabo-
lism and type 2 diabetes, e.g. metabolism (Reactome, q 
value = 5 × 10−11). Further details provided in Additional 
file 3: Supplementary Dataset STE 9–12.

Assignment of variants to tissues—coloc
To stratify blood pressure SNPs by SNPs which primar-
ily effect gene expression in the kidney or vasculature, we 
applied the previously proposed stratification approach 
[11] which is based on evidence for colocalization with 
gene expression, to assign SNPs to tissues (Additional 
file  1: Tables S10–S11). We applied a high minimum 
threshold posterior probability of colocalization (PPH4 > 
0.9) to assigns SNPs to either (1) the aorta and coro-
nary tissues (referred to collectively as “artery”) or (2) 
the glomerular or tubulointerstitial tissues (referred to 
collectively as “nephro”). Using this criteria, 117 SNPs 
were assigned to “artery” tissue for DBP and 132 for SBP. 
Among “artery” SNPs, most loci colocalized in the aorta 
(108 for SBP, 126 for DBP; Additional file 2: Fig. S1D–E). 
Eighty-seven and 77 SNPs were assigned to the “nephro” 
tissue group for DBP and SBP, respectively (Additional 
file  1: Tables S6–S7). Among “nephro” SNPs, tubuloint-
erstitial tissue dominated with 65 and 64 SNPs for DBP 
and SBP (Additional file  2: Fig. S1D–E). Approximately 
25% and 20% of SNPs were common to both tubuloint-
erstitial and glomerular in the DBP and SBP sets, respec-
tively. Comparison of all “artery” and “nephro” SNP 
sets revealed approximately 21% (36 SNPs) and 25% (42 
SNPs) overlap for DBP and SBP, respectively.

Tissue-partitioning showed limited alignment with 
functional pathways relevant to each tissue (Additional 
file 3: Supplementary Dataset STE 13–20), with very few 
weakly enriched terms found overall: 4 for “artery” SNPs 
in DBP (hypertrophic cardiomyopathy, ACE inhibitor 
pathway, metabolism of lipids, mitochondrial electron 
transport chain; q value = 0.029–0.047), 3 for “nephro” 
SNPs in DBP (O-glycosylation of TSR domain-containing 
proteins, aquaporin-mediated transport, transport of 
small molecules; q value = 0.024–0.047), and 3 cardio-
myopathy terms were enriched for among “nephro” SBP 
genes (q value = 0.017–0.024).

BMI colocalization results were obtained from Leyden 
et al. [11]. Among those, 140 SNPs were assigned to the 
brain and 86 to the adipose tissue, with 43 overlapping 
(~ 23% of total set). Enrichment of genes with colocali-
zation evidence for BMI in adipose and brain tissue sets 
showed limited overlap with biologically relevant terms, 
especially for the brain (Additional file 3: Supplementary 

Dataset STE 21–24); these replicated analyses previ-
ously described [11]. Detail of all trait associated genetic 
instruments and their pathway and tissue partition anno-
tations are provided in Additional file  1: Tables S6, S7, 
and S9.

Comparison of pathway‑ and tissue‑partitioned SNP sets
Importantly, comparison of the SNP sets assigned using 
pathway- and tissue-partitioning showed that they are 
largely distinct and could potentially offer orthogonal 
evidence (Additional file 2: Fig. S1 F–G). Only ~ 14% of 
SNPs were assigned to a category by both methods: 33 
DBP and 34 SBP SNPs compared to 234 and 234 uniquely 
assigned SNPs, respectively. Similar observations were 
made for BMI (Additional file 2: Fig. S1H–I): only 5 out 
of the 45 “mental health” pathway SNPs were shared 
with tissue SNPs as assigned previously by Leyden et al. 
[11]—4 with “brain” and 1 with both “adipose”/“brain”. 
A larger overlap was observed for “metabolic” pathway 
SNPs: 17 out of 39 SNPs were shared with tissue subsets 
(3 with “adipose”, 5 with both “adipose”/“brain”, and 9 
with “brain”).

Pathway‑ and tissue‑partitioned Mendelian randomization 
analyses for blood pressure
Having established the pathway- and tissue-partitioned 
SNPs for blood pressure, we proceeded to use them as 
exposures in one-sample MR carried out in individuals 
of European ancestry in the UK Biobank. We focussed 
on selected cardiometabolic outcomes (Additional file 1: 
Table S2), as they have been firmly established to be caus-
ally influenced by blood pressure [25, 25, 74, 75] and 
were previously evaluated using the tissue-partitioning 
approach with respect to BMI by Leyden et al. [11]. We 
describe in further detail the results for CHD, SV, and 
T2D below.

Pathway‑ and tissue‑partitioned Mendelian randomization 
analyses of CHD
We confirmed that genetically predicted DBP and SBP 
have an overall causal relationship with coronary heart 
disease (CHD) when instrumented using all trait associ-
ated IVs (OR95%CI = 1.09–1.11 and OR95%CI = 1.06–1.07, 
respectively) (further details Additional file 1: Table S12). 
We next conducted pathway-partitioned MR by incor-
porating the “renal” and “vessel” assigned pathway IVs 
and adjusted for shared effects in a multivariable setting. 
Our results indicate that the positive-directional effect 
of DBP and SBP on CHD is driven by the “vessel” path-
way (DBP: OR = 1.17, OR95%CI = 1.14–1.21, p value = 1.5 
× 10−28; SBP: OR = 1.13, OR95%CI = 1.11–1.15, p value = 2 
× 10−43), relative to the “renal” pathway (DBP: OR = 1.04, 
OR95%CI = 1.01–1.07, p value = 6.2 × 10−3; SBP: OR 
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= 1.01, OR95%CI = 0.99–1.02, p value = 1.9 × 10−1). 95% 
confidence intervals of the two subsets are distinct and 
non-overlapping (Fig. 2, Additional file 1: Table S13).

Interestingly, the results of our tissue-partitioned 
MR analysis incorporating “nephro” and “artery” SNPs 
assigned by evidence for colocalization yielded a dis-
tinct trend (Additional file 1: Table S14). In this analy-
sis, stronger positive directional effects were observed 
for the “nephro” tissue assigned IVs on CHD (DBP: OR 
= 1.11, OR95%CI = 1.08–1.14, p value = 2.8 × 10−16; SBP: 
OR = 1.08, OR95%CI = 1.06–1.09, p value = 6.8 × 10−29) 
when evaluated against “artery” tissue in the MVMR 
model (DBP: OR = 1.07, OR95%CI = 1.05–1.10, p value 
= 6.8 × 10−9; SBP: OR = 1.06, OR95%CI = 1.04–1.07, p 
value = 3 × 10−18). All tissue-partitioned exposures 

maintained evidence of an effect on CHD for SBP and 
DBP, unlike “renal” pathway-partitioned SBP which did 
not maintain evidence for an effect on CHD (p value 
= 0.19).

A sensitivity analysis limiting exposures to SNPs spe-
cifically assigned to each subset resulted in similar esti-
mates as when using all pathway/tissue assigned SNPs. 
We also show similar results for myocardial infarction 
(Additional file  2: Fig. S2) which is closely genetically 
correlated to CHD (Additional file  2: Fig. S3). Point 
estimates for MI display greater uncertainty and while 
the difference between pathway-partitioned exposures 
persists, it was not apparent for “artery” and “nephro” 
tissue partitions.

Fig. 2  Coronary heart disease: one-sample multivariable Mendelian randomization analysis of the effect of diastolic blood pressure (DBP) 
and systolic blood pressure (SBP) on CHD. We have investigated the overall trait effect using univariable MR and have conducted multivariable 
analyses of pathway-partitioned instruments (informed by Mendelian disease with abnormalities in the renal or blood vessel system) 
and multivariable analyses of tissue-partitioned genetic instruments (informed by evidence for genetic colocalization with gene expression “nephro” 
(kidney tissues: glomerular and tubulointerstitial) and “artery” (aorta and coronary artery tissues) instruments). Effect sizes are scaled to per one SD 
change in blood pressure
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Pathway‑ and tissue‑partitioned Mendelian randomization 
analyses of SV
The pathway- and tissue-partitioned IVs showed consist-
ent directional effects for left ventricular stroke volume 
(SV, Fig.  3). Analysis of the overall trait effect yields a 
negative directional effect on SV for genetically predicted 
DBP using all non-stratified instruments (beta = − 0.015, 
beta95%CI = (− 0.021, − 0.008), p value = 2.9 × 10−6). Both 
“vessel” (beta = − 0.052, beta95%CI = (− 0.076, − 0.028), p 
value = 2.8 × 10−5) and “artery” instrumented DBP (beta 
= − 0.03, beta95%CI = (− 0.051, − 0.009), p value = 5.6 
× 10−3) maintained evidence for the negative directional 
effect of DBP on SV, while a “renal” (beta95%CI = − 0.013, 
0.034) or “nephro” (beta95%CI = − 0.011, 0.034) DBP effect 
was not supported. The opposite was observed for SBP, 

which yielded an overall positive directional effect on 
SV using all non-stratified instruments (beta = 0.006, 
beta95%CI = (0.002, 0.01), p value = 2.7 × 10−3). Our path-
way-stratified MR indicated that the “renal” pathway 
SNPs contribute to the overall positive directional effect 
of SBP (beta95%CI = (0.0003, 0.0289)) while “vessel” SNPs 
have a negative directional effect on SV (beta95%CI = 
(− 0.034, − 0.004)). No clear distinction for tissue-parti-
tioned exposures was observed on SV.

Pathway‑ and tissue‑partitioned Mendelian randomization 
analyses of T2D
Dissecting the pathway and tissue effects on type 2 diabe-
tes also reveal a heterogenous landscape (Fig. 4). We first 
confirmed the known positive directional effect of blood 

Fig. 3  Stroke volume: one-sample multivariable Mendelian randomization analysis of the effect of diastolic blood pressure (DBP) and systolic blood 
pressure (SBP) on stroke volume (SV). We have investigated the overall trait effect using univariable MR and have conducted multivariable analyses 
of pathway-partitioned instruments (informed by Mendelian disease with abnormalities in the renal or blood vessel system) and multivariable 
analyses of tissue-partitioned genetic instruments (informed by evidence for genetic colocalization with gene expression “nephro” (kidney tissues: 
glomerular and tubulointerstitial) and “artery” (aorta and coronary artery tissues) instruments). Effect sizes are scaled to per one SD change in blood 
pressure
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pressure captured by the overall effect on T2D (DBP 
OR95%CI = 1.02–1.04; SBP OR95%CI = 1.03–1.04). Our 
pathway-stratified estimates for DBP maintained com-
parable positive directional effects on the risk of T2D. 
While the “vessel” SBP exposure produced higher odds 
of T2D (OR = 1.07, OR95%CI = 1.05–1.09, p value = 1.5 
× 10−12) than “renal” (OR = 1.03, OR95%CI = 1.01–1.05, p 
value = 4.2 × 10−4), we note that the effect estimates are 
partially overlapping. Further, the results of our tissue-
partitioned MR for “artery” maintains a positive direc-
tional effect on the risk of T2D for both DBP (OR = 1.08, 
OR95%CI = 1.05–1.11, p value = 4.3 × 10−8) and SBP (OR 
= 1.06, OR95%CI = 1.04–1.07, p value = 8.6 × 10−17), while 
null effects were observed for “nephro” SNPs (DBP 
OR95%CI = 0.97–1.03; SBP OR95%CI = 0.99–1.02).

We repeated the analysis above by analysing each parti-
tioned exposure independently within an individual-level 
univariable MR framework (Additional file 1: Tables S13–
S14). The results of this analysis provided similar patterns 
between SNP subsets, with any differences in effect esti-
mates accentuated further in MVMR analyses.

Sensitivity analyses for blood pressure
We further evaluated the exposure-outcome relation-
ships in a summary-level “two-sample” MR setting 
(Additional file  1: Tables S15–S17). In general, the two-
sample analyses had less power to detect distinct effects 
between partitioned exposures, but were directionally 
consistent with the individual-level (“one-sample”) MR. 
The one exception was a more pronounced causal effect 

Fig. 4  Type 2 diabetes: one-sample multivariable Mendelian randomization analysis of the effect of diastolic blood pressure (DBP) and systolic 
blood pressure (SBP) on T2D. We have investigated the overall trait effect using univariable MR and have conducted multivariable analyses 
of pathway-partitioned instruments (informed by Mendelian disease with abnormalities in the renal or blood vessel system) and multivariable 
analyses of tissue-partitioned genetic instruments (informed by evidence for genetic colocalization with gene expression “nephro” (kidney tissues: 
glomerular and tubulointerstitial) and “artery” (aorta and coronary artery tissues) instruments). Effect sizes are scaled to per one SD change in blood 
pressure
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of “nephro” SBP on myocardial infarction (OR = 1.04, 
OR95%CI = 1.02–1.06, p value = 2.3 × 10−4) relative to 
“artery” (OR = 1, OR95%CI = 0.98–1.02, p value = 1), align-
ing with the dominant role of “nephro” SBP observed in 
our one-sample MVMR of the related outcome CHD.

We found that mean absolute effect sizes tend not to 
differ significantly between all SNPs and pathway-/tissue-
partitioned IVs (Supplementary Table  20). Among all 
partitioned exposures, the mean F-statistics were > 60, 
suggesting low risk of weak instrument bias.

We proceeded to evaluate changes in the average het-
erogeneity (Qhet = Q/(Qdf − 1)) within pathway- or tis-
sue-partitioned IVs in comparison to all trait-associated 
instruments. We did not detect a downward trend in 
average heterogeneity which instead varied in unex-
pected ways. For example, we found Qhet to be lower 
among pathway-partitioned and tissue-partitioned 
exposures relative to all DBP SNPs (Additional file  1: 
Tables S21–S23). However, for SBP “renal” pathway and 
“artery” tissue IVs showed higher Qhet than all SBP SNPs, 
while “vessel” pathway and “nephro” tissue IVs were the 
opposite.

Next, we repeated our analyses using a negative out-
come phenotype: age-related macular degeneration [76] 
(AMD). The one-sample and two-sample MR results 
(Additional file  1: Tables S13–S14, S16–S17) did not 
indicate strong evidence of causal effect for our path-
way- or tissue-partitioned exposures, in line with our 

expectations. We did find one weak non-null result, how-
ever, only at a nominal level (Supplementary Fig.  4) for 
SNPs specific to the “renal” pathway for DBP and SBP 
(DBP OR = 1.07, OR95%CI = 1–1.14, p value = 0.03; SBP 
OR = 1.04, OR95%CI = 1.00–1.08, p value = 0.03).

Negative control partitioning of exposures by the 
main modes of Mendelian disease inheritance (autoso-
mal “dominant” or “recessive”) showed no association 
with the pathway-partitioned “renal”- “vessel” sub-
division (Supplementary Fig.  5 A, B) for DBP (p value 
= 0.13) and SBP (p value = 0.4, Supplementary Table 3). 
We note that this sensitivity is based on the assump-
tion that the negative control feature is not associated 
with pathway or tissue in a biologically meaningful way, 
though this may not hold in all cases. For example, a 
difference between “dominant” and “recessive” SNPs 
was detected when focussing on CHD as the outcome 
in a one-sample MR analysis (Supplementary Fig.  6). 
For instance, all “dominant” DBP SNPs had a higher 
effect on CHD (OR = 1.12, OR95%CI = 1.09–1.14, p value 
= 3.9 × 10−23) than all “recessive” SNPs (OR = 1.08, 
OR95%CI = 1.05–1.10, p value = 1.8 × 10−11) (Additional 
file 1: Table S22). However, when limiting ourselves to 
SNPs “specific” to each subset, the opposite conclusion 
was obtained with higher effects seen for “recessive” 
(OR = 1.22, OR95%CI = 1.17–1.26, p value = 3.9 × 10−28) 
than “dominant” SNPs (OR = 1.06, OR95%CI = 1.03–
1.09, p value = 3.4 × 10−4). No meaningful difference 

Fig. 5  Matrix of empirically derived (1000 replicates) p values for distribution of effect size differences between pathway-partitioned (Mendelian) 
instruments and tissue-partitioned (coloc) instruments in 1-sample and 2-sample MR setting (univariable and multivariable) using body mass index 
(BMI) and blood pressure—systolic (SBP) and diastolic (DBP) as exposures and cardiometabolic traits as outcomes (AF, CHD, MI, HF, stroke, T2D, 
LDVEDV, LVEF, LVESV, SV). p values < 0.05 are highlighted in dark red



Page 12 of 18Leyden et al. Genome Medicine           (2025) 17:54 

between the SNP subsets was observed in two-sample 
MR results (Additional file 1: Tables S23, S24). In addi-
tion, much less variation across SNP subsets was found 
for the T2D outcome (Additional file 2: Fig. S7), apart 
from one outlier: specific “recessive” SBP.

Pathway‑ and tissue‑partitioned Mendelian randomization 
analyses for body mass index
We conducted a further comparison of the pathway- 
and tissue-partitioned MR methods for BMI. The larg-
est differential effect between pathway-partitioned BMI 
was observed between “mental health” and “metabolic” 
SNPs on atrial fibrillation. The overall trait effect pre-
dicted using all non-stratified BMI SNPs confirmed a 
moderate effect on AF (OR = 1.05, OR95%CI = 1.04–1.06, 
p value = 4.6 × 10−55; Additional file 1: Table S25). Our 
individual-level MVMR analysis highlighted this effect 
was maintained predominantly by the metabolic path-
way (OR = 1.10, OR95%CI = 1.07–1.13, p value = 3.3 
× 10−10) when adjusting for “mental health” (OR = 1.05, 
OR95%CI = 1.02 = 1.08, p value = 5.6 × 10−4) in the same 
model (Additional file 1: Table S26). A similar differen-
tial relationship was captured between “all”, “metabolic”, 
and “mental health” pathways in 1-sample univari-
able analyses (Additional file 1: Table S26) and 2-sam-
ple MR analyses (Additional file  1: Tables S27–S28). 
This provides orthogonal evidence to the tissue-par-
titioned MR result reported previously [11] and repli-
cated here (Additional file  1: Tables S29–S32), where 
the “brain” IVs predominantly maintained the positive 
directional effect on AF (1-sample MVMR OR = 1.04, 
OR95%CI = 1.02–1.06, p value = 6.4 × 10−6, Additional 
file 1: Table S30), compared to “subcutaneous adipose” 
(1-sample MVMR OR = 1.02, OR95%CI = 1–1.04, p value 
= 0.08).

Sensitivity analyses for body mass index
The average heterogeneity (Qhet) of “mental health” and 
“metabolic” BMI SNPs for AF was close to the average 
heterogeneity for all BMI SNPs (Additional file 1: Tables 
S33–S34)—2.5, 2.05, and 2.19, respectively. We also 
did not uncover evidence for a systematic reduction in 
average heterogeneity among SNP subsets across other 
outcomes.

The results from our negative control outcome analysis 
of AMD indicated that “mental health” and “metabolic” 
SNP subsets analysed independently in 1-sample/2-sam-
ple univariable MR or in conjunction with each other 
(1-sample multivariable MR) show no evidence for causal 
role, as per expectations (Additional file  1: Tables S26, 
S28).

Random sampling of SNP subsets
Overall, the results of our one-sample pathway-parti-
tioned MVMR analysis yielded a variety of differential 
effect relationships depending on the outcome. These 
ranged from negligible (e.g. DBP Mendelian partition-
ing with respect to T2D), medium with overlapping 
confidence intervals (SBP Mendelian partitioning with 
respect to T2D) to totally distinct (SBP Mendelian par-
titioning with respect to CHD). Where negligible differ-
ences are observed between stratified exposure effects 
on an outcome in this context, we would interpret this 
as neither pathway explaining more of the trait effect on 
the outcome than the other. Where totally distinct effects 
are observed this provides evidence to support a direct 
effect on the outcome by one pathway independent of the 
other. Furthermore, our results yielded examples where 
there was alignment between the pathway and tissue 
underlying the exposure-outcome relationship identi-
fied by both the pathway- and tissue-partitioning meth-
ods (e.g. vessel- and artery-assigned SBP instruments 
produced greater effect sizes on T2D than renal- and 
nephro-assigned instruments), and where distinct expo-
sure-outcome effects were estimated between methods 
(e.g. vessel-assigned instruments and nephro-assigned 
instruments for SBP each had greater effects than renal- 
or artery-assigned instruments respectively on CHD). 
The latter case emphasizes intriguing differences inher-
ent to the SNPs characteristics captured by each stratifi-
cation method, i.e. symptomatic effects on the biological 
system (pathway-partitioning) or gene expression effects 
in the tissue of origin (tissue-partitioning). Therefore, it is 
important to establish whether any differences detected 
were likely to be both biologically meaningful and not 
driven by chance assortment.

To address this, we employed a simulation technique, 
where we re-ran our analysis pipeline 1000 times for each 
exposure-outcome pair using 2 subsets of SNPs sam-
pled randomly from across all the exposure SNPs. This 
allowed us to quantify the frequency of the absolute dif-
ferences in effect sizes such as observed in our MR anal-
ysis (or greater) relative to background (in the process 
obtaining two-tailed p value with the floor value of 10−3), 
and empirically derive 95% confidence intervals of the 
difference (Additional file 1: Table S35).

Figure  5 provides an overview of this sensitivity 
approach run for all the exposures (BMI, SBP, DBP), 
SNP subsets (pathway, tissue), MR methods (1-sample or 
2-sample), and MR models (univariable, multivariable). 
Across all the MR analyses with blood pressure as expo-
sure, we find strong evidence for the differential effect of 
pathway-assigned “renal” and “vessel” exposures on CHD 
(p value range: 0.001–0.042) along with MI. In addition, 
tissue-assigned “artery” and “nephro” SBP subsets show 
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a strong difference of effect on T2D, CHD, and MI (p 
value range: 0.007–0.042) but the latter two only in the 
two-sample MR setting. Significant evidence based on 
1-sample MVMR was found among tissue-partitioned 
SNP subsets for DBP and T2D, as well as BMI and CHD/
MI. Both 1-sample and 2-sample MVMR analyses sup-
port a differential effect of tissue-partitioned “adipose” 
and “brain” SNPs on BMI (p value = 0.001–0.013).

We also find weaker evidence for a difference between 
“renal” and “vessel” blood pressure subsets with respect 
to the stroke volume outcome (1-sample MVMR SBP p 
value = 0.043, DBP p value = 0.025). There was little evi-
dence against the null hypothesis (of chance SNP assort-
ment) for any of the BMI or BP pathway-based results 
with respect to atrial fibrillation, heart failure, stroke, 
LVEDV, LVESV, or LVEF, with the exception of the fol-
lowing two-sample univariable MR analyses involving 
pathway-partitioned instruments: BMI effect on atrial 
fibrillation (p value = 0.012), systolic and diastolic BP 
effect on heart failure (p value < 0.02).

Discussion
In this study, we have leveraged biological data to dissect 
the causal associations between blood pressure and BMI 
with cardiometabolic traits within an MR framework. To 
do so, we stratified trait associated genetic instruments 
by “pathway” (based on Mendelian disease categories 
using MendelVar) or by “tissue” (based on genetic colo-
calization with tissue derived eQTL).

A primary aim of the partitioning methods described 
is to assign a molecular context for how genetic IVs con-
tribute to variation of a complex exposure. The identifica-
tion of distinct estimates in MR analyses of partitioned 
exposures could arise from (1) differential pathway 
effects due to the measured exposure comprising pheno-
typic composites, or (2) no true differential pathway but 
differences emerging due to horizontal pleiotropy. In our 
application, the interpretation of results aligns with the 
former. Chiefly, BMI is a crude composite measure of a 
set of underlying traits. For example, measured BMI is 
downstream of adiposity, which is itself a complex trait 
comprising multiple adipose depots with differing con-
sequences on disease [77, 78]. Similarly, this logic is 
extended to consider biological influences on measured 
blood-pressure (representing the measurable output 
from a highly dynamic homeostatic system, influenced by 
multiple organ-specific and centrally regulated biologi-
cal mechanisms). The derivation of pathway- and tissue-
partitioned exposures leverages biological data to directly 
address whether the overall exposure effect on the out-
come is differentially influenced via a particular pathway/
tissue “partition”. Importantly, we advocate that appli-
cations of the pathway- or tissue-partitioning methods 

should be accompanied by characterization of the IV 
partitions with respect to distinct trait effects where pos-
sible. This was demonstrated here first by cross-eval-
uation of enriched functional terms in independent 
data-resources, and secondly in a stringent sensitivity 
test against 1000 randomly sampled partition combina-
tions. We note also that the “brain” and “adipose”-BMI 
IVs have been further shown to differentially correlate 
with distinct adiposity and anthropometry measures 
[11]. This is because interpretation of differential path-
way/tissue-assigned MR estimates is informed by our 
confidence that the instrument-stratification procedure 
has appropriately identified distinct biology underlying 
the measured exposure.

Overall, our results highlight the significance of renal 
and vascular pathways in blood pressure-related condi-
tions. Notably, vessel-pathway effects and kidney-tis-
sue effects were each emphasized by the pathway- and 
tissue-stratified MVMR analyses respectively for SBP 
and DBP on CHD. Similarly for BMI, for example, we 
observed effects on atrial fibrillation which were path-
way (“metabolic”-led) and tissue (“brain”-led). Sensitivity 
analyses emphasized the consistent direction of effects 
in one-sample and two-sample MR (univariable and 
multivariable) albeit with some variability in magnitude. 
We also conducted simulations to assess the probability 
that differences in causal estimates between SNP subsets 
arose by chance, and these support the interpretation of 
our main findings. In our main results, we have presented 
representative cardiac traits—CHD and SV, which as 
shown in Fig. S2 are highly genetically correlated with MI 
and LVEDV/LVESV, respectively. As expected, and dem-
onstrated in Fig.  5, magnitude of effect size differences 
between pathway- and tissue-partitioned SNP subsets for 
those related exposures is highly congruent.

Where feasible, we aimed to repeat all multivari-
able analyses in both an individual (“one-sample”) 
and summary (“two-sample”) setting. Altogether, we 
find a comparable number of results [14] with empiri-
cally determined significant differences (p value < 0.05) 
in one-sample (univariable: 3, multivariable: 11) ver-
sus two-sample MR (univariable: 10, multivariable: 4), 
with univariable and multivariable results agreeing in 
the direction and magnitude of effect for the same SNP 
subsets. Some results reassuringly aligned across all MR 
types and model specifications: e.g. pathway-stratified 
analyses for DBP versus CHD, tissue-stratified analyses 
for SBP and BMI versus T2D. In some cases, pronounced 
differences were only observed in a single setting using 
one model type but not the others, such as tissue-par-
titioned analyses for BMI with respect to CHD (1-sam-
ple multivariable). In this scenario, we note that power 
to detect independent effects in the tissue-partitioned 
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2-sample MVMR model may be more of a challenge 
due to greater noise in the model. Despite the tissue-
partitioned IVs being shown not to suffer from weak 
instrument bias previously [12], the incorporation of 
the differentially weighted versions of the same genetic 
“exposure” will have less precision. Related to this, the 
multivariable analyses in the present study restricted all 
pathway/tissue comparisons to two categories. This is 
because the MVMR is dependent on the power to detect 
strong trait effects which persist after adjusting for the 
other exposure in the same model. The identification of 
appropriate resources to expand this methodology will be 
an interesting area for future research. As such, weighing 
the balance between being able to identify distinct bio-
logical mechanisms and retaining sufficient power in the 
model is an important aspect of the multivariable study 
design we have applied here.

Therefore, to gain a better understanding of tissue- or 
pathway-partitioned effects, multiple types of MR anal-
yses should be undertaken, whenever possible. In the 
present study, for ventricular function traits which were 
only available in the UKB cohort, we decided to focus on 
the individual- over the summary-level analysis. This is 
because the two-sample MR method may be more prone 
to over-fitting in the presence of high sample overlap of 
UKB individuals with our exposure sample. Furthermore, 
the current pathway-stratified MR approach is limited in 
that we are unable to model the SNP subsets jointly using 
the multivariable approach in a two-sample MR setting.

It may be expected that stratification of SNPs by path-
way and tissue would result in reduced heterogeneity 
compared to using all SNPs, which can capture a wider 
range of biological processes. However, our pathway- 
and tissue-stratified results did not consistently support 
this expectation. For some IV subsets, the heterogene-
ity was indeed lower, which was in line with the initial 
hypothesis. However, other partitions showed greater 
heterogeneity than all SNPs combined, suggesting that 
those specific pathways or tissues might still be highly 
pleiotropic or potentially indicate the presence of some 
bias, such as misclassification of SNP functional category. 
While categorization of trait associated SNPs by their 
pathway or tissue helps bring us closer to understanding 
context-specific biological effects, there remains many 
levels of dynamic biological and molecular mechanisms 
which require further investigation. A recent example 
from Suzuki et  al. highlights the potential for single-
cell type omics platforms to inform partitioning of trait 
associated SNPs representing aetiological heterogene-
ity underlying T2D [79]. As the sample sizes of large 
complex trait GWAS grows, such as the most recently 
published blood-pressure meta-analysis [80], we may 
have even greater power to detect trait effects. With the 

advent of multi-omic and cell-specific QTL resources, 
it will be important to explore how these classifications 
may be refined in future.

Our new approach uses enrichment of ontology terms 
assigned to Mendelian diseases whose causal genes share 
the same genetic locus as the exposure SNPs, which can 
sometimes result in ambiguous assignment to appropri-
ate biological pathways. For example, rs12630999 from 
BMI was allocated to both the “mental health” and “met-
abolic” set due to location between two neighbouring 
Mendelian disease genes: STAG1 and PCCB, respectively. 
In another case, one systolic BP variant (rs3915499) was 
associated with two different pathways (“renal” and “ves-
sel”) due to the two distinct monogenic diseases caused 
by disruption of smooth muscle myosin heavy-chain 11 
(MYH11) gene [81] whose intron the SNP resides in. 
Under such a scenario, MendelVar cannot provide a more 
nuanced prediction regarding the “correct” pathway(s). 
In this example, “vessel”-only assignment could be more 
suitable as the associated disease, familial thoracic aortic 
aneurysm 4 is defined by profound structural abnormali-
ties in the aorta, while a renal symptom (hydronephrosis) 
is only a marginal feature of megacystis-microcolon-
intestinal hypoperistalsis syndrome 2. Nonetheless, we 
found that in many cases MendelVar unequivocally 
assigned SNPs to genes causal for disorders with strong 
links to a single category: “renal”—CEP164 (nephronoph-
thisis 15), NRIP1 and PBX1 (congenital anomalies of kid-
ney and urinary tract syndromes); “vessel”—EIF2 AK4 
(familial pulmonary capillary hemangiomatosis), PRDM6 
(patent ductus arteriosus), HTRA1 (cerebral arteriopa-
thy with subcortical infarcts and leukoencephalopathy); 
“mental health”—PPP3 CA (developmental and epilep-
tic encephalopathy 91, ACCIID), KCNMA1 (cerebellar 
atrophy, developmental delay, and seizures, Liang-Wang 
syndrome); “metabolic”—PPARG​ (familial lipodystro-
phy), SLC2 A2 (Fanconi-Bickel syndrome). Correct SNP 
assignment to the gene in each case was also supported 
by either presence within its intron or coding region.

A limitation of the pathway-stratified method is that it 
is reliant on mainly manual curation of disease ontology 
terms based on descriptions of clinical features [70, 72], 
and expanding the automation of that time-consuming 
process could increase power and potentially accuracy of 
our method. The specificity of the colocalization method 
suffers from co-ordinated expression of genes across 
many tissues which complicates selection of biologically 
causal tissues over merely tagging but new methods are 
being developed to address this confounding factor [82, 
83]. We note that the modest eQTL sample sizes analysed 
in this study may have reduced the number of instru-
ments we were able to identify with robust colocalization 
evidence [84]. However, as the catalogues of molecular 
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trait data become more comprehensive, the role of sin-
gle-cell type derived QTL in the identification of more 
specific instrument annotations will be a valuable area of 
future research. As the depth of available biological and 
molecular annotations develops, we may also achieve 
more precise IV partitioning with respect to biological 
function between pathway or tissue subsets. Further-
more, integrating different features to partition complex 
genetic exposures into a single joint model may offer 
improvement in pathway-based stratification. Here, we 
used Mendelian disease genetics and tissue derived gene 
expression, but other orthogonal evidence such as pro-
tein–protein interactions [85] and PheWAS [9] could be 
combined. Such (and other) future new methods offer a 
powerful means to advance our biological understanding 
of complex risk factor effects on disease and inform the 
development of targeted therapeutics.

Similarly to Darrous et  al. [9], we conclude that our 
new pathway-stratified method offers complementary, 
orthogonal evidence to the existing tissue-stratified 
approach as evidenced by very weak overlap. Compari-
son of MR results using both approaches suggests agree-
ment for the dominant role of vasculature-related SNPs 
in determining the left ventricular stroke volume and 
the risk of type 2 diabetes. Furthermore, the identifica-
tion of a dominant role for blood pressure on CHD by 
“vessel” (via pathway-stratified MR) and “nephro” (via 
tissue-stratified MR) effects is a strength of the different 
biological characteristics captured by the data informing 
each approach. While gene selection based on coloc had 
less enrichment of relevant gene functional categories in 
general (Additional file  3: STE 21–24), the MendelVar 
selection by disease symptom ontology is a priori more 
directly related to gene function than expression pat-
tern. We find more sharing of pathway-stratified “meta-
bolic” than “mental health” SNPs with tissue-stratified 
“brain” SNPs, aligning with the brain-centric expression 
of key mechanisms regulating metabolism [86, 87], and 
the representation of brain regions relevant to homeosta-
sis and energy balance in the brain eQTL data used for 
SNP identification [88]. Although both “metabolic” path-
way and “adipose” tissue IVs are enriched for metabolic 
pathway genes, the “metabolism” term is broad and there 
could still be differences in the specific metabolic mecha-
nisms represented in each subset.

Conclusion
This study introduced and evaluated a novel, Mendelian 
disease-centric approach, “pathway-partitioned MR”, 
to dissect the impact of distinct biological pathways 
underlying complex risk factors on health outcomes. 
The comparison of results based on SNPs annotations 
using both the pathway- and tissue-partitioning methods 

demonstrates how integrating additional biological data 
can yield complementary insight on latent variables 
underlying complex genetic exposures. Lastly, we dem-
onstrate how analyses of partitioned exposures in an 
MVMR framework helps decipher whether a particular 
biological mechanism directly contributes to disease risk, 
offering unique insight for the development of targeted 
interventions.
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