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Abstract 

Background  The microbiome of adolescents is poorly understood, as are factors influencing its composition. 
We aimed to describe the healthy adolescent microbiome and identify early-life and concurrent predictors of its 
composition.

Methods  We performed metagenomic sequencing of 247 fecal specimens from 167 adolescents aged 11–14 years 
participating in the Health Outcomes and Measures of the Environment (HOME) Study, a longitudinal pregnancy 
and birth cohort (Cincinnati, OH). We described common features of the adolescent gut microbiome and applied 
self-organizing maps (SOMs)—a machine-learning approach—to identify distinct microbial profiles (n = 4). Using 
prospectively collected data on sociodemographic characteristics, lifestyle, diet, and sexual maturation, we identified 
early-life and concurrent factors associated with microbial diversity and phylum relative abundance with linear regres-
sion models and composition with Kruskal–Wallis and Fisher’s exact tests.

Results  We found that household income and other sociodemographic factors were consistent predictors 
of the microbiome, with higher income associated with lower diversity and differential relative abundances of Fir-
micutes (increased) and Actinobacteria (decreased). Sexual maturation, distinct from chronological age, was related 
to higher diversity in females and differences in phylum relative abundances and compositional profiles in both males 
and females.

Conclusions  Our study suggests that adolescence is a unique window for gut microbial composition and that it may 
be shaped by both early-life and concurrent exposures, highlighting its potential in future epidemiologic research.
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Background
The gut microbiome—the microorganisms that reside 
in the gastrointestinal tract—is a critical component 
of human health [1]. Most prior microbiome research 
has been conducted in infants, adults, or clinical popu-
lations, leaving a critical gap in understanding the ado-
lescent microbiome [2, 3]. The prevailing theory is that 
an infant’s gut microbiome composition fluctuates over 
the first few years of life, with diversity steadily increas-
ing until a diet of solid food is established [4, 5], and then 
reaches a mature, adult state [6]. However, the gut micro-
biome, which responds to hormonal changes during 
pregnancy [7–9] and menopause [10], may be sensitive to 
the changes of estrogen and testosterone during puberty. 
In fact, studies have found that subgingival [11] and skin 
[12] microbiomes change across stages of sexual matura-
tion. The few studies of the adolescent gut microbiome 
also highlight differences in prevalent and abundant 
bacteria relative to adults and younger children [13–16]. 
Thus, adolescence may be a critical period for develop-
ment and alteration of the gut microbiome.

In addition to clarifying distinctive features of the ado-
lescent gut microbiome, it is crucial to understand fac-
tors that shape microbial communities in this life stage. 
Few prospective studies have examined the microbiome 
in relation to gestational and early-life exposures. Despite 
this, some studies have reported differences in the gut 
microbiome related to self-report of early-life factors like 
delivery mode and the initiation or duration of consump-
tion of human milk that persist into adulthood [17, 18]. 
Elucidating the influence of early-life and concurrent 
factors on the adolescent microbiome using prospec-
tive data has potential implications for interventions to 
improve lifelong well-being.

We investigated the fecal microbiome of adolescents 
(ages 11–14 years) in the Health Outcomes and Meas-
ures of the Environment (HOME) Study. This prospective 
pregnancy and birth cohort has extensive longitudinal 
data collected through structured questionnaires, clinical 
assessments, and dietary recalls, allowing for a compre-
hensive analysis of early-life and concurrent factors asso-
ciated with the adolescent microbiome.

Methods
Cohort and study participants
The Health Outcomes and Measures of the Environ-
ment (HOME) Study is a prospective pregnancy and 
birth cohort based in Cincinnati, OH, USA. Prior publi-
cations described the cohort and schedule of study visits 
from pregnancy through age 12 (range: 11–14) years [19, 
20]. Briefly, 420 pregnant people were recruited during 
prenatal visits at Cincinnati metropolitan-area obstet-
ric practices between 2003 and 2006. Participants were 

excluded if they were age < 18 years, > 19 weeks gesta-
tion, or planning to move before delivery. Additionally, 
because the cohort was designed to study prenatal lead 
exposure, participants had to live in homes build before 
1978 when lead paint was banned for residential use 
[21]. Participants attended annual in-person study visits 
through age 5 years and again at age 8 and 12 years. Each 
visit included the collection of biospecimens, anthro-
pometry, and questionnaires to capture sociodemo-
graphic characteristics. Two hundred fifty-six completed 
the 12-year study visit and 167 provided at least one stool 
sample [20]. Five sets of twins were included in analy-
ses. Caregivers provided written, informed consent and 
adolescents provided written, informed assent. The insti-
tutional review boards (IRBs) of Cincinnati Children’s 
Hospital Medical Center (CCHMC) and participating 
delivery hospitals approved this study. Dartmouth Col-
lege, Brown University, and the University of Massachu-
setts Amherst deferred to the CCHMC IRB as the IRB of 
record.

Stool collection
At the 12-year study visit, staff asked participants to col-
lect up to three stools within the month following the 
study visit using Hemoccult II SENSA fecal occult blood 
test (FOBT) cards (Beckman Coulter, Brea, CA, USA). 
Stool samples were not collected at prior study vis-
its. Females were instructed not to collect a stool while 
they were menstruating. For each stool collection (“sam-
ple”), participants were provided three FOBT cards, 
two labeled “end” and one labeled “middle,” and were 
instructed to swab from each end and the middle of the 
stool for the appropriate cards (each a “specimen”; Addi-
tional file 1: Fig. S1). This resulted in up to nine distinct 
specimens from three stool samples from each partici-
pant. Participants were provided a toilet hat, all necessary 
collection materials, and detailed written instructions 
that were reviewed at the study visit. Participants mailed 
the FOBT cards to CCHMC, where they were stored at 
− 80 °C until shipment to the laboratory for analysis. For 
a subset of participants (n = 20), we extracted all speci-
mens from the first stool sample and the “middle” speci-
mens from subsequent two stool samples. To select the 
subset from the 95 (38 male and 57 female) participants 
who provided nine specimens, we restricted to those who 
had data on the timing of each stool, complete data for 
other research aims, and had variability in stool consist-
ency, reported using the Bristol scale (n = 45; 17 male, 
28 female; Additional file  1: Fig. S1) [22]. These were 
then narrowed to ten male and ten female participants 
based on medication use, symptoms (e.g., stomachache), 
duration between samples, and whether the participant 
urinated in the stool collection hat (Additional file  2: 
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Table  S1). For the remaining participants, we extracted 
and sequenced DNA from the “middle” card of the first 
stool sample.

DNA extraction and sequencing
DNA was extracted from the FOBT cards at the Labo-
ratory of Precision Environmental Health at Columbia 
Mailman School of Public Health following adapted pro-
tocols for DNA extraction from solid stool [23]. DNA was 
extracted from the eluent using the QIAamp PowerFecal 
Pro kit following the manufacturer’s protocol (Qiagen, 
Hilden, Germany). Briefly, the stool specimen was cut 
from the FOBT card with a sterile scissor and homog-
enized in a bead-beating tube. Total genomic DNA was 
then isolated in a spin column and quantified with a 
Nano spectrophotometer. For downstream sequencing, 
total DNA (mean ± SD yield: 12,694 ± 11,212 ng) was 
normalized to 35 ng/μl in 40 μl and sent to the New York 
University Langone Genome Technology Center (RRID: 
SCR_017929; New York, USA) for shotgun metagen-
omic sequencing. Technicians pooled libraries with 
Illumina Flex (San Diego, CA, USA) library preparation 
and sequenced the specimens with an Illumina NovaSeq 
6000 using an S2 flowcell to obtain 2 × 150 bp paired-end 
reads.

Sequence processing
Raw sequences were uploaded to the National Center 
for Biotechnology Information Sequence Read Archive 
(Accession: PRJNA1139690) after the removal of human 
sequences [24]. Prior to processing, there were (mean 
± SD) 34,265,115 ± 7,762,788 reads per specimen. 
Sequences were processed using the Biobakery pipeline 
in Python 3.7 [25]. Human and ribosomal RNA reads 
were removed, and sequences were trimmed based on 
quality scores (minimum: 25) with kneaddata (v0.12.0 
[26] with Bowtie2 and trimmomatic v0.39 [27] using 
databases hg37 dec v0.1 for human reads and SILVA 128 
LSU and SSU for ribosomal RNA reads). After this pre-
processing step, specimens had a mean ± SD read depth 
of 30,322,565 ± 6,719,222. We aligned sequences to 
known microbial genomes and metagenome-assembled 
genomes (MAGs) using MetaPhlAn 4 with the CHOC-
OPhlAnSGB vJun23 database [28].

Metadata
We identified early-life and concurrent factors that may 
predict adolescent fecal microbial diversity and composi-
tion based on the extant literature of infant and adult gut 
microbiome studies. Delivery mode (vaginal, cesarean) 
and sex assigned at birth (male, female) were abstracted 
from medical records. Delivery mode was missing for 
3 of the 167 participants who provided a stool sample. 

Adolescent’s race/ethnicity was assessed via standardized 
questionnaire as a proxy for systemic racism and cultural 
factors related to the microbiome. We dichotomized 
race/ethnicity as non-Hispanic white and minoritized 
racial/ethnic groups (primarily non-Hispanic Black, with 
some American Indian, Asian/Pacific Islander, Hispanic) 
due to small sample size of non-Hispanic Black groups. 
Caregivers reported the duration of human milk con-
sumption (exclusive and any) using standardized ques-
tionnaires at multiple times during the first 3  years of 
life [29]. We categorized these non-normally distributed 
variables as follows: for duration of any human milk con-
sumption (exclusive or supplemented with formula or 
complementary foods)—fed for 6 months or less, or fed 
longer than 6  months; for duration of exclusive human 
milk consumption—2 days or fewer (normal duration 
of hospital stay after delivery [30]), or more than 2 days. 
Human milk consumption data were missing for 4 of 
the 167 participants who provided a stool sample. We 
assessed tobacco use and/or exposure of the pregnant 
person with serum cotinine concentrations at 16 weeks 
gestation. Serum cotinine concentrations were missing 
for 3 of the 167 participants who provided a stool sample. 
Based on prior findings, we categorized cotinine concen-
trations as no smoke exposure (< 0.015 ng/mL), expo-
sure to second-hand smoke (0.015–3 ng/mL), and active 
smoking (≥ 3  ng/mL) for descriptive statistics [31], and 
used log10-transformed continuous cotinine concentra-
tions in analyses.

We calculated participant’s age at the age 12 study visit 
as the time (days) between the date of the study visit 
and the recorded date of birth. At the visit, caregivers 
reported their household income. Trained research staff 
measured participants’ weights and standing heights in 
triplicate, from which we calculated age- and sex-stand-
ardized body mass index (BMI) Z-scores [32]. As previ-
ously described, participants were asked to evaluate their 
sexual maturation using pictograph Tanner scales with 
written descriptions (breast development and pubic hair 
growth for females and pubic hair growth only for males) 
[33, 34]. Three females and no males who contributed 
stool samples declined to report sexual maturation. Due 
to few participants reporting Tanner stages 1 and 5, we 
grouped stages 1 and 2 as “early” development and 4 and 
5 as “advanced” development, as previously described 
[35]. Female participants and their caregivers were asked 
if the participant had reached menarche, and if so, at 
what age. One participant who provided a stool sample 
declined to report on their menarchal status. As previ-
ously described [34, 35], we collected a morning fasting 
blood sample at the study visit and stored serum samples 
at − 80 °C until analysis. Serum was unavailable for 19 
females and 8 males. We measured estradiol in females 
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with quantitative chemiluminescent immunoassay at 
Associated Regional and University Pathologist laborato-
ries in Salt Lake City, UT. Testosterone was quantified in 
males by liquid chromatography tandem mass spectrom-
etry at CCHMC. We log10-transformed hormone con-
centrations to reduce the influence of outliers.

At the time of each stool sample collection, partici-
pants reported their current antibiotic use and the stool’s 
consistency using the Bristol scale. Briefly, participants 
were provided with cartoon images and descriptions of 
stool consistency ranging from 1 (most solid) to 7 (most 
liquid) and were asked to endorse the category that most 
closely resembled their stool. Based on prior literature, 
we grouped categories 1–3 as “constipated” and catego-
ries 6 and 7 as “diarrhea,” with categories 4 and 5 repre-
senting “healthy” stool [36]. Two participants endorsed 
multiple Bristol categories (Additional file 2: Table S2).

At the age 12 study visit and on two subsequent days, 
study staff administered 24-h dietary recalls (one week-
end day and two weekdays) using the Nutrition Data 
Systems for Research software. One participant who 
provided a stool sample did not complete the dietary 
recalls. Using these data, we computed 2010 Healthy Eat-
ing Index (HEI) scores, including average daily intake of 
soluble, insoluble, and total fiber [37]. For analyses, we 
considered the three fiber measures, total HEI scores, 
and the 12 HEI components as potential predictors of 
microbiome diversity and composition (Additional file 2: 
Table S3). Sparse components (greens and beans—58.7% 
zeroes; seafood and plant protein—43.1% zeroes) were 
treated dichotomously (any vs. none).

Statistical analysis
In the subset of participants (n = 20) with multiple speci-
mens sequenced (n = 5 per participant), we sought to 
understand factors that contributed to variability in 
species-level diversity and composition. To assess the 
contribution of factors [subject, sample order, location 
on stool (end vs. middle), time between stool samples, 
stool consistency] to variability in Shannon and inverse 
Simpson indices and phylum relative abundances, we fit 
linear mixed effects models with nested random effects 
using the “nlme” R package sequentially adding nested 
variables [38, 39]. We determined the best fit model via 
the minimum Akaike’s information criterion (AIC) and 
determined the proportion of variance explained by each 
variable with interclass correlation coefficients (ICCs). 
We calculated Bray–Curtis distances between observa-
tions from the species matrix to assess the separation 
between specimens and performed principal coordi-
nates analysis [40, 41]. The first three components were 
then plotted against each other to visualize separation. 
We quantified the contribution of factors to variability in 

species-level composition using marginal adonis2 mod-
els with 9999 permutations from the “vegan” R package 
[40]. Briefly, we conducted sequential models with each 
predictor in the model individually and then adjusting for 
prior predictors and reported R2 and p values. Our final 
model included all variables that were significantly asso-
ciated in the last sequential model.

We then conducted a descriptive analysis of the ado-
lescent gut microbiome. To reduce the influence of auto-
correlated specimens, we restricted to the first middle 
specimen for each participant (n = 167). We calculated 
specimen species diversity and richness with the Shan-
non and inverse Simpson indices using the “vegan” R 
package [40, 42, 43]. The inverse Simpson index gives 
more weight to the evenness of taxon relative abundance 
than the Shannon index, and, unlike the Simpson index, 
is not bound between zero and one. To describe micro-
biome composition, we explored prevalent (≥ 80% detec-
tion in specimens) and abundant (≥ 1% median relative 
abundance) species and genera.

We also sought to identify microbial composition pro-
files using self-organizing maps (SOMs) [44–46]. This 
unsupervised, machine-learning data-reduction method 
is related to multidimensional scaling and k-means 
clustering. Briefly, specimens with similar microbiome 
profiles cluster together. These clusters, or nodes, are 
arranged spatially based on similarity to each other to 
aid visualization and interpretation. For this analysis, we 
evaluated hexagonal SOMs ranging from 4 to 20 nodes 
in size, fitting robust centered log ratio (rclr) transformed 
relative abundances of prevalent genera (> 80% detection) 
as the correlated data variables (Additional file  1: Figs. 
S2, S3) [47]. We selected the optimal map size based on 
established cluster statistics including the ratio of within-
cluster to between-cluster sum of squared errors, and 
the percent of variability in phylum relative abundance 
explained by the SOM (adjusted R2) [44, 48]. Considera-
tion was also given to maintaining sufficient observations 
in each node for downstream analyses. We then grouped 
nodes into clusters, prioritizing similarities in genera 
that previously were found to distinguish adolescent gut 
microbiomes from those of adults or younger children 
(Additional file 2: Table S4).

To estimate associations between predictors of micro-
biome diversity and composition, we restricted to the 
first middle specimen for each participant (n = 167) to 
eliminate correlation between observations from the 
same participant. We transformed phylum, genus, and 
species relative abundances using the rclr method to 
account for outliers and the compositional nature of the 
data [47]; thus, effect estimates can be interpreted as 
log-fold change in phylum geometric mean abundance 
compared to the average phylum/genus/species. We 
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estimated differences in Shannon and inverse Simpson 
indices and log-fold change in phylum, genus, and spe-
cies relative abundances associated with early-life and 
concurrent predictors using linear regression. For con-
tinuous variables, we compared median and interquartile 
ranges (IQRs) across nodes and tested for significant dif-
ferences using Kruskal–Wallis tests. For categorical pre-
dictors, we calculated Fisher’s exact p values. When there 
were more than two ordered categories, we treated the 
predictor as an ordered factor in linear models to calcu-
late a p-for-trend. For most analyses, we considered p < 
0.05 as significant, but for genus and species associations 
we considered a more conservative p < 0.01 significant. 
For models in which sexual maturation was the predic-
tor, we ran analyses separately in males and females. We 
hypothesized that the association of early-life and con-
current diet with the microbiome may be confounded 
by household income as a correlate of baseline health 
and that the association between sexual maturation and 
the microbiome may be confounded by age. Thus, we 
adjusted for these variables in sensitivity analyses. Also 
as a sensitivity analysis, we excluded the four participants 
who were taking antibiotics at the time of stool collec-
tion and repeated the analysis of predictors of microbial 
diversity and SOM node membership.

Results
Intra‑individual gut microbiome variability
In a subset of participants (n = 20), we sequenced 5 
specimens from 3 stool samples collected over 2 weeks, 
including three specimens from different locations on the 
first sample (Additional file  1: Fig. S1, Additional file  2: 
Table  S1). Shannon diversity was predicted by partici-
pant, sample, and location within the stool sample, while 
inverse Simpson diversity was predicted by participant 
and sample (Additional file  2: Table  S5). Sixty percent 
of Shannon diversity and 37% of inverse Simpson diver-
sity was explained by participant, with sample explaining 
~ 25% of diversity, and location within stool explaining 
< 1% (Additional file  2: Table  S6). Variability in relative 
abundance of Firmicutes (76%), Bacteroidota (75%), Act-
inobacteria (83%), and Proteobacteria (78%) was also 
attributable to participant, with 7–15% attributable to 
sample (Additional file 2: Tables S5, S6). The species-level 
composition of specimens from the same participant 
were more similar to each other than they were to other 
specimens (Fig.  1, Additional file  2: Table  S7). Approxi-
mately 85% of the variability was explained by participant 
in univariate models. Bristol score (14.9%) and Bristol 
category (4.0%) were also significant univariate predic-
tors of Bray–Curtis distances, although each explained 
only a small proportion of the variance. Our final model 

included participant (71.2% of variance), days between 
sample collection (0.3%), and Bristol score (1.8%).

Adolescent gut microbiome composition
After restricting to one specimen per participant (n = 
167), a median (interquartile range; IQR) of 120 (101, 
135) species were detected per specimen, with a median 
(IQR) Shannon index of 3.5 (3.3, 3.7), reflecting moder-
ate diversity. Firmicutes was the most abundant phy-
lum on average, although there were differences across 
specimens (Fig.  2). Other prevalent phyla (sequenced 
in ≥ 80% of individuals) included Bacteroidetes, Act-
inobacteria, and Proteobacteria. We found 37 prevalent 
species (sequenced in ≥ 80% of individuals), with Faecali-
bacterium prausnitzii detected in all but one individual 
(Additional file 2: Table S8). Eubacterium rectale was the 
most abundant species on average [median relative abun-
dance (MedRA) = 6.9%], followed by Faecalibacterium 
prausnitzii (MedRA = 6.0%). Twelve other species had 
an average median relative abundance greater than 1% 
(Additional file 2: Table S8). There were 33 prevalent gen-
era (sequenced in ≥ 80% of individuals), with Bacteroides 
detected in all individuals and Mediterraneibacter, Fae-
calibacterium, and Blautia detected in all but one speci-
men (Additional file  2: Table  S9). On average, the most 
abundant genera were an unclassified Lachnospiraceae 
genus (MedRA = 7.7%), Bifidobacterium (MedRA = 6.4%), 
and Faecalibacterium (MedRA = 6.2%; Additional file  2: 
Table S9).

Differences between specimens and moderate cor-
relations between prevalent genus relative abundances 
(Additional file  1: Fig. S3) enabled us to identify genus-
level microbial profiles using self-organizing maps 
(SOMs) in 167 specimens (one per participant). The 
best fit SOM had 15 nodes or profiles (Additional file 1: 
Figs. S2, S4). We grouped these nodes into four clus-
ters (Fig.  2), preferentially grouping nodes with similar 
median relative abundances of genera previously used 
to discriminate fecal microbiome samples of adoles-
cents from adults or younger children (Additional file 2: 
Table S4). Clusters A and C were characterized by high 
Bifidobacterium and Bacteroides (A) and high Rumino-
coccus (C). Cluster B was characterized by low relative 
abundance of a candidate genus (candidatus Cibioni-
bacter) and high Ruthenibacterium. Cluster D was char-
acterized by high relative abundance of Flavonifractor. 
Species-level Shannon diversity, but not inverse Simpson 
diversity, was associated with SOM cluster (Additional 
file 2: Table S10).

Factors associated with the adolescent gut microbiome
To gain a better understanding of factors associated with 
the adolescent microbiome, we estimated differences in 
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species-level diversity and relative abundances of preva-
lent phyla, genera, and species across factors collected 
prospectively or concurrent with the stool collection 
and examined how these factors differed across the four 
SOM clusters. These factors fell into four broad catego-
ries: early-life factors (sex assigned at birth, child’s race/
ethnicity, delivery mode, infant diet, gestational expo-
sure to tobacco smoke), measures of sexual maturation 

(self-reported, hormone concentrations), non-dietary 
concurrent factors (age at follow-up, body mass index 
(BMI) Z-score, household income, stool consistency, 
current antibiotic use), and concurrent dietary compo-
nents. The characteristics of participants who provided 
at least one stool sample were similar to those of all par-
ticipants who completed the follow-up visit at 12 years of 
age (Table 1), although females who contributed a stool 

Fig. 1  Variability of gut microbiome within and between stool samples. a Principal coordinate (PCo) plots for the first three PCos of Bray–Curtis 
distances. Percent variability explained by each PCo is in parentheses. Each point represents a specimen, with color reflecting participant 
(characteristics in Supplementary Table 1) and shape representing stool sample order. b Variance in diversity (Shannon, inverse Simpson) 
and phylum relative abundance (Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria) attributable to participant, sample, and position on stool 
(Shannon, inverse Simpson, Bacteroidetes). Remaining variability (white space) is unexplained. Exact values can be found in Supplementary Table 30
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sample were more likely to be menarchal than those who 
did not contribute a stool sample.

Early‑life factors
Of the early-life factors investigated, race/ethnicity 
was the most consistently associated with the adoles-
cent gut microbiome (Fig.  3). Non-Hispanic white par-
ticipants had  lower Actinobacteria [ β  = − 0.5 log-fold 
difference (95%CI: − 0.8, − 0.2), p = 0.002] and mod-
estly higher Proteobacteria [ ̂β  = 0.3 log-fold difference 

(95%CI: − 0.1, 0.6), p = 0.105] than participants from 
marginalized populations, although the latter estimate 
did not reach statistical significance (Additional file  2: 
Table  S11). Non-Hispanic white participants also had 
lower abundances of the genera Bifidobacterium, Dorea, 
Coprococcus, and Oscillibacter, and higher abundance of 
Intestinibacter and Lachnospira than participants from 
marginalized populations (Additional file  2: Table  S12). 
However, these differences were not reflected in genus-
level SOM cluster distribution of race (Additional file 2: 

Fig. 2  Distributions of phylum relative abundance in adolescent fecal microbiome specimens (n = 247) and common genus-based profiles (n = 
167). a The relative abundance (y-axis) and Shannon index of each specimen (x-axis) compared to the median sample. Samples are arranged 
by increasing Firmicutes relative abundance. b Distribution of robust centered log ratio transformed and centered genus relative abundances 
(y-axis) in self-organizing map (SOM) clusters (x-axis). Only prevalent genera (≥ 80%) that have different median relative abundances in at least two 
clusters are shown
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Table 1  Characteristics of participants in the Health Outcomes and Measures of the Environment (HOME) Study followed through 
adolescence compared to those contributing at least one fecal sample [n (%), mean ± standard deviation, median (25 th %ile, 75 th 
%ile)]

a Data on current antibiotic use were collected as part of a survey administered at the time of stool sample collection, thus are missing for participants who did not 
provide a stool sample

Participants followed through 12 years of age (n = 256) Participants contributing a fecal sample (n = 
167)

Maternal serum cotinine at 16 weeks gestation

  Not exposed (< 0.015 ng/mL) 73 (28.5) 52 (31.1)

  Second-hand smoke (0.015–3 ng/mL) 149 (58.2) 97 (58.1)

  Active smoker (≥ 3 ng/mL) 29 (11.3) 15 (9.0)

  Missing 5 (2.0) 3 (1.8)

Child’s race/ethnicity

  Non-Hispanic white 147 (57.4) 103 (61.7)

  Minoritized race/ethnicity 109 (42.6) 64 (38.3)

Delivery mode

  Vaginal 176 (68.8) 118 (70.7)

  Cesarean 69 (27.0) 46 (27.5)

  Missing 11 (4.3) 3 (1.8)

Sex assigned at birth

  Male 113 (44.1) 72 (43.1)

  Female 143 (55.9) 95 (56.9)

Fed exclusively human milk for at least 2 days

  Yes 99 (38.7) 72 (43.1)

  No 140 (54.7) 91 (54.5)

  Missing 17 (6.6) 4 (2.4)

Duration of human milk consumption

  ≤ 6 months 141 (55.1) 89 (53.3)

  > 6 months 98 (38.3) 74 (44.3)

  Missing 17 (6.6) 4 (2.4)

Family annual income (USD) 75,000 (35,000, 145,000) 85,000 (45,000, 145,000)

Child’s age at 12-year assessment (y) 12.4 ± 0.7 12.3 ± 0.7

Child’s BMI Z-score at 12-year assessment 0.4 ± 1.2 0.4 ± 1.2

Current antibiotic usea

  No – 163 (97.6)

  Yes – 4 (2.4)

Tanner pubic hair stage Male Female Male Female

  Early (1, 2) 54 (47.8) 36 (25.2) 40 (55.6) 21 (22.1)

  Mid (3) 30 (26.5) 42 (29.4) 21 (29.2) 30 (31.6)

  Advanced (4, 5) 28 (24.8) 62 (43.4) 11 (15.3) 41 (43.2)

  Missing 1 (0.9) 3 (2.1) – 3 (3.2)

Tanner breast stage

  Early (1, 2) – 31 (21.7) – 21 (22.1)

  Mid (3) – 68 (47.6) – 42 (44.2)

  Advanced (4, 5) – 41 (28.7) – 29 (30.5)

  Missing – 3 (2.1) 3 (3.2)

Menarchal status

  Non-menarchal – 73 (51) – 39 (41.1)

  Menarchal – 64 (44.8) – 55 (57.9)

  Missing – 6 (4.2) – 1 (1.1)

  Estradiol (pg/dL) – 43 (23, 64) – 44 (19, 65)

  Testosterone (ng/dL) 138 (27, 383) – 120 (27, 323) –
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Table  S10). Associations with species were consistent 
with genus-level associations; specifically, non-Hispanic 
white participants had lower Coprococcus comes and 
Dorea longicatena and higher Eubacterium ramulus than 
participants from marginalized populations (Additional 
file 2: Table S13).

Maternal gestational serum cotinine, an indicator of 
prenatal tobacco smoke exposure, was also consistently 
associated with differences in the adolescent gut micro-
biome. Higher concentrations were associated with 
increased relative abundance of Actinobacteria [ ̂β  = 0.2 
log-fold difference per tenfold cotinine increase (95%CI: 

Fig. 3  Selected associations of early-life (race/ethnicity; a–d) and concurrent (household income, d–g) predictors with adolescent gut microbiome 
diversity (Shannon index; a, e), robust centered log ratio (rclr) transformed phylum relative abundances (b, f), and genus-level self-organizing map 
(SOM) node membership (c, h) and rclr transformed genus and species relative abundances (d, g). Genus and species estimates with p < 0.01 are 
displayed
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0.1, 0.4), p = 0.001] and decreased relative abundance of 
Proteobacteria [ ̂β  = − 0.1 log-fold difference per tenfold 
cotinine increase (95%CI: − 0.3, 0.0), p = 0.064; Addi-
tional file 2: Table S11]. Higher gestational cotinine con-
centrations were negatively associated with abundance 
of Bacteroides and Phocaeicola, and positively associated 
with Bifidobacterium (Additional file 2: Table S12). Spe-
cifically, higher gestational cotinine was associated with 
abundance of Bacteroides uniformis [ ̂β  = − 0.3 log-fold 
difference per tenfold cotinine increase (− 0.45, − 0.14), 
p = 3.33E − 04] and Dorea formicigenerans [ ̂β  = 0.11 log-
fold difference per tenfold cotinine increase (0.03, 0.19), 
p = 0.007] (Additional file 2: Table S13). While early-life 
diet was not associated with microbiome composition at 
the phylum level, both exclusive consumption of human 
milk for at least 2  days and consumption of human 
milk for more than 6 months were each associated with 
unique differences in the abundances genera and species. 
The distribution of early-life diet trended toward being 
different across SOM clusters, with those in cluster D 
least likely to be fed exclusively human milk for at least 
2 days (26.5%) and most likely to be fed human milk for 
more than 6  months (55.9%). Exclusive consumption of 
human milk for at least the first 2 days of life was asso-
ciated with lower abundance of Blautia wexlerae, Dorea 
formicigenerans, and Eubacterium rectale, and consump-
tion of human milk for more than 6 months was associ-
ated with higher abundances of Oliverpabstia intestinalis 
(Additional file 2: Table S13) as well as the genera Rose-
buria and Eubacterium (Additional file  2: Table  S12). 
Duration of human milk consumption is strongly asso-
ciated with socioeconomic factors; thus, we conducted 
a sensitivity analysis adjusting our early-diet models for 
household income, which did not meaningfully alter our 
findings, although the association with Dorea formicigen-
erans was somewhat attenuated (Additional file 2: Tables 
S12–S16). Sex assigned at birth and birth mode were not 
associated with adolescent gut microbiome composition 
(Additional file 2: Tables S10–S13), and no early-life fac-
tors were associated with Shannon or inverse Simpson 
diversity (Additional file 2: Tables S16, S17).

Sexual maturation factors
Self-reported sexual maturation was associated with 
gut microbial diversity and composition in males and 
females. We measured fasting morning serum gonadal 
hormones estradiol and testosterone in females and 
males, respectively, as objective markers of sexual 
maturation. Among females, tenfold higher morn-
ing serum estradiol was associated with 0.4 log-fold 
higher Proteobacteria abundance [(95%CI: 0.0, 0.9), 
p = 0.046; Fig.  4, Additional file  2: Table  S11]. Estra-
diol was also positively associated with abundance of 

Faecalibacterium, especially Faecalibacterium praus-
nitzii [ ̂β  = 0.82 log-fold higher per tenfold estradiol 
increase (0.24, 1.41), p = 0.007; Additional file 2: Tables 
S12, S13]. Self-reported female sexual maturation 
(menarche, breast development, pubic hair growth) 
was also associated with differences in the gut microbi-
ome. Menarchal females [ ̂β  = 0.48 log-fold higher com-
pared to premenarchal (0.18, 0.78), p = 0.002] and those 
reporting advanced breast development [ ̂β  = 0.49 log-
fold higher compared to those reporting early devel-
opment (0.06, 0.91), p-for-trend = 0.027] had higher 
Dorea abundance (Additional file 2: Table S12), includ-
ing both Dorea longicatena and Dorea formicigenerans 
(Additional file 2: Table S13). Those reporting advanced 
breast development and pubic hair growth had higher 
abundances of Coprococcus, specifically Coprococcus 
comes, and lower abundances of Romboutsia, specifi-
cally Romboutsia timonensis, than those reporting ear-
lier development. Breast development was associated 
with higher species-level Shannon (p-for-trend = 0.005) 
and inverse Simpson diversity (p-for-trend = 0.025; 
Additional file  2: Table  S17). Sample size limits infer-
ence about associations between sexual maturation 
and SOM nodes (Additional file  2: Table  S10). How-
ever, we found that the proportion of females report-
ing advanced pubic hair growth varied across SOM 
clusters, with cluster D having the highest proportion 
reporting advanced growth (58.8) and those in cluster B 
reporting the lowest proportion (25%, p = 0.062).

Among males, self-reported pubic hair growth was 
associated with higher relative abundance of Actinobac-
teria (p-for-trend = 0.024) and somewhat lower relative 
abundance of Bacteroidota (p-for-trend = 0.067; Fig.  4, 
Additional file  2: Table  S11). Males reporting advanced 
pubic hair growth had higher relative abundances of 
Bifidobacterium (p-for-trend = 0.026) and Dorea (p-for-
trend = 0.016), and lower relative abundance of Lach-
nospira compared to those with less advanced growth 
(p-for-trend = 0.016; Additional file  2: Table  S12). In 
addition to positive associations with Dorea species, we 
found that males reporting advanced pubic hair growth 
had lower relative abundance of Bacteroides uniformis 
(p-for-trend = 0.02) and two Blautia species (Additional 
file 2: Table S13). We did not find differences in diversity 
or SOM clusters related to sexual maturation in males or 
associations with testosterone (Additional file  2: Tables 
S10–S13, S17). Adjustment for age attenuated some asso-
ciations and strengthened others, but the overall patterns 
remained the same (Additional file 2: Tables S12–S16).

Concurrent non‑dietary factors
As expected, participants taking antibiotics at the time 
of stool collection (n = 4) had lower Shannon [ ̂β  = − 0.8 
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(95%CI: − 1.1, − 0.5), p < 0.001] and inverse Simpson 
diversity [ ̂β  = − 11.3 (95%CI: − 18.9, − 3.7), p = 0.004] 
than those not taking antibiotics (Additional file  2: 
Table  S7). Higher household income at the time of the 
study visit was significantly associated with lower Shan-
non [ ̂β  = − 0.01 per $10,000 (95%CI: − 0.02, − 0.00), 
p = 0.023] and inverse Simpson [ ̂β  = − 0.3 per $10,000 
(95%CI: − 0.5, − 0.03), p = 0.028] diversity, although 
the effect sizes were small (Fig.  3; Additional file  2: 
Table  S17). Participant BMI Z-scores were marginally 
positively associated with the Shannon index, although 
this estimate did not reach statistical significance [ ̂β  = 
0.04 per unit increase in BMI Z-score (95%CI: − 0.01, 
0.1), p = 0.093]. Stool consistency (Bristol score) was 
weakly associated with some differences in diversity, but 
there were no consistent trends, and once categorized as 
constipated, healthy, or diarrhetic there were no signifi-
cant associations (Additional file  2: Table  S17). House-
hold income, BMI Z-scores, and antibiotic usage were 
also associated with differential phylum, genus, and spe-
cies relative abundances (Additional file  2: Tables S11–
S13). For example, household income was associated 

with higher Firmicutes relative abundance [ ̂β  = 0.02 log-
fold change per $10,000 (95%CI: 0.00, 0.03), p = 0.011] 
and lower Actinobacteria relative abundance [ ̂β  = − 0.04 
log-fold change (95%CI: − 0.07, − 0.01), p = 0.004; Addi-
tional file 2: Table S11], as well as lower Bifidobacterium, 
Dorea, and Oscillibacter (Additional file  2: Table  S12). 
Age at follow-up was not associated with differences in 
adolescent gut microbiome diversity or composition 
(Additional file 2: Tables S10–S13, S17).

Dietary factors
Participants had a median (IQR) Healthy Eating Index 
2010 (HEI) score of 44 [38, 53], indicating poor adher-
ence to the Dietary Guidelines for Americans (Addi-
tional file  1: Fig. S5, Additional file  2: Table  S3) [37, 
49]. Higher total HEI scores were associated with 0.01 
(0.0, 0.01) higher Shannon index (p = 0.028; Additional 
file 2: Table S18), as well as lower Actinobacteria rela-
tive abundance (Additional file  2: Table  S19), higher 
Lachnospira abundance (Additional file  2: Table  S12), 
and lower Oscillospiraceae bacterium CLA AA H250 

Fig. 4  Associations between sexual maturation and gut microbiome diversity (Shannon index; a), robust centered log ratio (rclr) transformed 
phyla relative abundances (b, d), and rclr transformed genus and species relative abundances (c, e). Estimates in c and e for breast development 
and pubic hair growth are compared to early growth, for menarchal are compared to pre-menarchal, and for log10(Estradiol) are per tenfold 
increase in estradiol. Genus and species estimates with p < 0.01 are displayed
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(recently named Hominenteromicrobium mulieris; 
Additional file 2: Table S13) [50]. We hypothesized that 
household income confounded the association between 
dietary components and microbiome diversity, and 
thus conducted an adjusted analysis (Fig.  5). Most of 
these estimates were consistent even after adjusting for 
income, except for the association with Actinobacteria 
(Additional file  2: Tables S20, S21). As expected, most 
individual dietary components were positively corre-
lated with measures of diversity, but only total vegeta-
ble intake was significantly associated (Additional file 2: 
Table S18). After adjusting for household income, these 
associations were strengthened such that consumption 
of solid fats and added sugars and fiber variables were 
also significantly associated with diversity measures 
(Additional file  2: Table  S19). We did not observe dif-
ferences in SOM cluster assignment related to dietary 
intake (Additional file 2: Tables S22, S23). Bacteroidota 
relative abundance was negatively associated with con-
sumption of total and insoluble fiber, especially after 
adjustment for household income (Additional file  2: 
Tables S19, S21). In accordance, consumption of fruit 
and whole grains, sources of dietary fiber, was also 
negative correlated with Bacteroidota relative abun-
dance. All fiber variables were also positively associ-
ated with Proteobacteria relative abundance, as was 

fruit consumption. Firmicutes relative abundance was 
positively associated with consumption of total vegeta-
bles (unadjusted), total fruit, and whole fruit (adjusted). 
The only dietary variable associated with Actinobacte-
ria relative abundance was vegetable intake, for which 
we observed a negative association. We observed 
some associations between HEI components and rela-
tive abundances of genera and species. Most notably, 
the relative abundance of the species associated with 
total HEI scores, Oscillospiraceae bacterium CLA AA 
H250, was lower among those with higher consump-
tion of total and insoluble fiber and lower consumption 
of solid fats and added sugars (Additional file 2: Tables 
S12, S13).

Our sensitivity analysis excluding participants cur-
rently taking antibiotics did not meaningfully alter the 
associations of early-life and concurrent factors with 
fecal microbiome diversity and composition (Additional 
file 2: Tables S12, S13, S24–S35). A notable exception was 
Blautia wexlerae, which was positively associated with 
sexual maturation in males and females only after exclud-
ing participants currently taking antibiotics (Additional 
file 2: Table S13).

Fig. 5  Associations between dietary components and gut microbiome diversity (Shannon index) and robust centered log ratio (rclr) transformed 
phyla relative abundances. Estimates are adjusted for household income. HEI, Health Eating Index; FA Ratio, fatty acid ratio; SFAAS, solid fats 
and added sugars. Diet-phyla associations with p < 0.1 are displayed
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Discussion
In this study of adolescents’ fecal microbiomes, we 
described prevalent and abundant bacterial species in 
addition to highlighting predictors of microbial diversity, 
composition, and variability. On average, adolescent sam-
ples had higher relative abundance of Firmicutes than 
other bacterial phyla, with smaller proportions of Bacte-
roidetes, Actinobacteria, Proteobacteria, and other phyla. 
The most prevalent and abundant species and genera 
were commonly detected human-gut-affiliated microbes, 
including Faecalibacterium prausnitzii [51]. The most 
consistent predictors of bacterial diversity and composi-
tion were household income and self-reported race/eth-
nicity, suggesting these sociodemographic characteristics 
may influence the adolescent microbiome. Our study 
addresses the paucity of studies in the critical develop-
mental window of adolescence, which may be critical for 
lifelong health.

Prior studies of the adolescent microbiome have been 
small (n < 100) or used arrays or 16S rRNA sequencing. 
These studies reported that adolescents have less Copro-
bacillus and more Burkholderiales than younger chil-
dren [16], and more Clostridium and Bifidobacterium 
than adults [13]. There is also a growing literature on the 
differences between the late childhood (9–12 years of 
age) microbiome relative to adults [14, 52]. These stud-
ies report that Bacteroides, Faecalibacterium, and Bifi-
dobacterium—all abundant genera in our study—were 
more abundant in children than adults. Unexpectedly, 
we found that Bifidobacterium relative abundance was 
higher among males reporting more advanced pubic 
hair growth, although this was not reflected at the spe-
cies level. Blautia—which was highly abundant in our 
sample—has previously been found to be more abundant 
in adults than children [14, 52]. In accordance, we found 
that Blautia wexlerae was associated with more advanced 
sexual maturation in males and females, but only after 
excluding individuals taking antibiotics. The genus most 
consistently positively associated with maturation in the 
prior literature, Dorea, was also associated with more 
advanced sexual maturation in both males and females 
in our analyses [14–16]. Together, these studies suggest 
that some genera or species may be bellwethers of gut 
maturation.

In line with the hypothesis that the adolescent micro-
biome is distinct from both pediatric and adult commu-
nities, we observed differences in microbial diversity and 
composition related to sexual maturation and hormone 
concentrations. Gut bacterial composition may change 
with sexual maturation in response to a shifting hormo-
nal milieu, as other studies have observed differences in 
the microbiomes of post-menopausal individuals [10, 
53, 54] and those taking hormonal oral contraceptives 

[55, 56]. Further, ovariectomized or gonadectomized 
mice experience shifts in their microbiomes that can be 
reversed by supplementation with the estradiol and dihy-
drotestosterone, respectively [57, 58]. Certain bacterial 
enzymes can metabolize unconjugated steroid hormones 
or facilitate enterohepatic cycling of conjugated steroid 
hormones, suggesting there may be bidirectional feed-
back loops between gut bacteria and circulating hormone 
concentrations [59]. Our findings suggest that puberty 
may be a key window of microbiome development that 
should be investigated in relation to chronic health 
outcomes.

Our findings suggest that household income and race/
ethnicity are important factors to consider in future stud-
ies of the microbiome, including as a covariate in studies 
of environmental exposures or health outcomes. Income 
is likely a proxy for other factors such as household size 
[60] and housing conditions [61], including residen-
tial mold [62] and lead paint or pipe exposure [63, 64], 
proximity to major roadways and affiliated air pollution 
[65, 66], and other environmental toxicants that have 
been linked to the microbiome [67]. Income may also be 
related to personal [68] and oral [69] hygiene. Income 
is also related to diet quality, food choices/availability, 
and lifestyle, which in turn are factors that may be more 
strongly related to the microbiome than the HEI compo-
nents assessed in this study [70–75].

Race, which is a social construct, was also associ-
ated with the microbiome in our study. While race may 
serve as a proxy for genetic ancestry, which has a small 
but significant contribution to microbiome composition 
[76–78], it also reflects dietary difference between popu-
lations [70, 75, 79, 80], either due to cultural differences 
or systemic racism limiting the availability of nutritious 
food options in neighborhoods with majority minoritized 
populations (i.e., food deserts) [81, 82]. Other facets of 
systemic racism, such as psychological stress [83] and 
poor environmental quality linked to historic redlining 
[84–86], may drive the race-microbiome association in 
our study [87]. Larger epidemiologic studies to elucidate 
the nuances of this association are needed to understand 
how social factors influence the microbiome and down-
stream health consequences.

We hypothesized that diet would be a significant driver 
of gut bacterial diversity and composition, but did not 
find strong associations with HEI components. Most 
HOME Study participants reported poor adherence to 
US dietary guidelines [49], which is not unusual for stud-
ies of the general US population [88–90], particularly 
adolescents [89]. Consistent with prior studies of diet and 
the microbiome, we observed a small positive associa-
tion between total HEI scores and bacterial diversity [88, 
91]. Associations of individual food components with 
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bacterial diversity and composition were weak. Opera-
tionalization of diet as HEI components may not capture 
features that are most relevant to microbiome diversity 
and composition, although they have previously been 
reported to be  predictors of the microbiome [91]. For 
example, we did not observe associations between total 
dairy consumption and most components of the micro-
biome. Fermented dairy consumption may be a stronger 
predictor of microbiome composition. Similarly, while 
there is some evidence to support our findings of asso-
ciations between fiber and microbiome composition [92], 
individual dietary fibers have highly specific associa-
tions with individual bacterial species [93]; thus, our use 
of total fiber may have obscured some findings. A more 
comprehensive investigation of longer-term and more 
detailed dietary patterns with the adolescent microbiome 
is warranted.

Based on prior associations of birth mode [18, 94] and 
human milk consumption [95] with childhood or adult 
gut microbiome composition, we hypothesized that we 
would observe associations in adolescence. We found 
no evidence, however, of an association of birth mode 
with adolescent microbiome diversity or composition. 
Most studies of the adult microbiome collect data on 
birth mode and early diet retrospectively, which could 
be biased. It is also possible that our study was under-
powered to detect small differences in the microbiome 
according to birth mode. Prior studies have primarily 
highlighted differences in individual species or genera, 
rather than compositional profiles or diversity measures 
[95, 96]. We found some evidence that consumption of 
human milk was linked to differences in the adolescent 
gut microbiome, although there was evidence some of 
these findings were confounded by socioeconomic sta-
tus. The bacteria associated with early-life consumption 
of exclusively human milk in our study were different 
from those associated with longer duration of any human 
milk consumption. This may reflect true differences in 
the impact of early-life dietary patterns on the adolescent 
microbiome, or may reflect sociodemographic differ-
ences in ability to continue human milk feeding beyond 
6  months. Further, participants who gave birth at one 
hospital in the cohort catchment area were offered for-
mula immediately; thus, these participants did not meet 
the definition of being exclusively fed human milk early 
in life, even though the majority of their calories may 
have come from human milk. The human milk micro-
biome is dominated by Firmicutes, Actinobacteria, and 
Proteobacteria [97–99]. Additional longitudinal stud-
ies examining the transfer of milk microbes to offspring 
could elucidate our findings further.

Similar to prior studies, we found that most of the vari-
ability in fecal bacterial diversity and composition was 

explained by intra-individual variation, with a smaller 
proportion of variance explained by days between sam-
ple collection and stool consistency [100–102]. Even 
though we selected the subset of participants included 
in this analysis to have maximum within-subject vari-
ability based on stool consistency, this was dwarfed by 
between-subject variability. Thus, we are reassured that a 
single sample is sufficient to estimate gut microbial com-
position over a short period for most epidemiologic stud-
ies, although longitudinal studies may provide additional 
insight into health outcomes. Approximately 12.5% of the 
variability in microbiome composition remains unex-
plained by the examined factors. This variability may be 
attributable to environmental exposures or health status, 
but future studies are required to elucidate important, 
modifiable components.

This study had some limitations. The use of fecal occult 
blood test (FOBT) cards has been validated for metagen-
omic sequencing, but some differences exist in bacterial 
relative abundances compared with gold standard meth-
ods (e.g., immediately frozen whole stool) [103]. Likewise, 
sequence processing pipelines like MetaPhlAn can be 
biased in their alignment to known sequences. We used 
up-to-date libraries of known sequences, which include 
species-level genome bins (SGBs) that have not yet been 
aligned to known taxa, to reduce this bias [28]. Our 
assessment of factors that may predict microbiome diver-
sity and composition, while broad, was not all-encom-
passing, and we may not have collected or analyzed all 
variables that are most predictive of the microbiome. For 
example, the use of three 24-h dietary recalls, while effec-
tive at capturing recent nutrient intake, may not reflect 
longer-term dietary patterns that may be more relevant 
to microbiome diversity and composition. Most of our 
models were unadjusted for other predictors; thus, our 
results should not be interpreted as causal. Lastly, while 
we assessed predictors of prevalent phyla, genera, and 
species, less prevalent features may be uniquely linked to 
early-life and concurrent factors.

This is one of the first investigations into predictors of 
the adolescent microbiome and sources of its variability. 
Our detailed and comprehensive collection of early-life 
and concurrent features that have been associated with 
the microbiome coupled with 12 years of prospective 
follow-up in a moderately large sample size allowed us 
to conduct a detailed statistical analysis of factors influ-
encing the gut microbiome. In addition to the value of 
information garnered here, this investigation will be 
useful for identifying confounders in future analyses of 
the adolescent gut microbiome and exposures or health 
outcomes. We employed cutting-edge machine-learning 
methodologies such as SOMs to identify common micro-
bial profiles. Previously, we have used this approach to 
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characterize the fecal metabolome [104], but this is the 
first time that SOMs have been applied to human micro-
bial taxonomies. This method enhances the characteri-
zation and visualization of complex data and improves 
reproducibility across studies because the map from one 
study can be projected onto data from another [44, 45]. 
Overall, these strengths contribute to the rigor and relia-
bility of the study findings, advancing our understanding 
of the adolescent gut microbiome and its determinants.

Conclusions
In our study of the adolescent gut microbiome, we found 
that sociodemographic variables were the most consist-
ently associated with bacterial diversity and composition. 
Our findings shed light on the intricate interplay between 
early-life exposures, sexual maturation, dietary habits, 
and socioeconomic factors in shaping the adolescent gut 
microbiome. Understanding these associations with pre-
dictors is crucial for identifying potential confounders in 
future epidemiologic studies of the adolescent microbi-
ome and health outcomes. This study adds to the growing 
research on the microbiome and provides some insights 
into how the adolescent microbiome is a unique bio-
marker that may be relevant to lifelong health.
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